Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1164-1176     CSTR: 32134.14.1005.4537.2023.371      DOI: 10.11902/1005.4537.2023.371
  研究报告 本期目录 | 过刊浏览 |
Co3O4-Zn复合镀层制备及其模拟酶催化防污活性研究
蒋泽1,2,3, 翟晓凡2,3(), 张雨2,3, 孙佳文2,3, 蒋全通2,3, 王优强1(), 段继周2,3(), 侯保荣2,3
1 青岛理工大学机械与汽车工程学院 青岛 266520
2 中国科学院海洋研究所海洋环境腐蚀与生物污损重点实验室 青岛 266071
3 海洋科学与技术试点国家实验室(青岛)海洋腐蚀与防护开放工作室 青岛 266235
Preparation of Co3O4-Zn Composite Coating and Its Simulated Antifouling Activity of Enzymes Catalyst
JIANG Ze1,2,3, ZHAI Xiaofan2,3(), ZHANG Yu2,3, SUN Jiawen2,3, JIANG Quantong2,3, WANG Youqiang1(), DUAN Jizhou2,3(), HOU Baorong2,3
1 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
2 CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
3 Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, China
引用本文:

蒋泽, 翟晓凡, 张雨, 孙佳文, 蒋全通, 王优强, 段继周, 侯保荣. Co3O4-Zn复合镀层制备及其模拟酶催化防污活性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1164-1176.
Ze JIANG, Xiaofan ZHAI, Yu ZHANG, Jiawen SUN, Quantong JIANG, Youqiang WANG, Jizhou DUAN, Baorong HOU. Preparation of Co3O4-Zn Composite Coating and Its Simulated Antifouling Activity of Enzymes Catalyst[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1164-1176.

全文: PDF(12151 KB)   HTML
摘要: 

将具有过氧化物酶催化活性的Co3O4纳米颗粒通过电沉积的方法与锌基体共沉积获得了新型的Co3O4-Zn金属镀层,在Co3O4和锌基体的共沉积过程中引入了超声波和油酸钠,在此过程中,超声波和油酸钠有力地促进了Co3O4在共沉积表面的分散和吸附。通过SEM、XRD、电化学测试等表征手段证明Co3O4以有效的结构复合到Zn基体中,而油酸钠的加入则有效地增加了Co3O4-Zn镀层中Co3O4的负载量。此外,还用大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌3种典型污损细菌评估了Co3O4-Zn镀层的抗菌性能。Co3O4-Zn镀层对这3种细菌的抑制率超过98%,显示出高度和广谱的抗菌性能。研究还证明,Co3O4-Zn镀层在具有H2O2情况下会产生超氧自由基和羟基自由基,它们在抗菌过程中起着主导的作用。最后还对复合镀层的抗菌稳定性和耐腐蚀特性进行了验证,表明复合镀层表现出良好的抗菌稳定和耐腐蚀特点。该研究结果为模拟酶催化杀菌金属基镀层的发展提供了新的可能,也为涉海设备的防污措施提供了一种新的思路。

关键词 Co3O4-Zn镀层超声辅助模拟酶催化抗菌电沉积油酸钠    
Abstract

Nanoparticles Co3O4 with peroxidase catalytic activity were co-deposited with Zn by electrodeposition to obtain a novel Co3O4-Zn composite coating on Q235 carbon steel. Ultrasound and sodium oleate (NaoI) were introduced during the co-deposition of Co3O4 and Zn, which strongly promoted dispersion and adsorption of Co3O4 on the co-deposited surface coating. The characterization by SEM and XRD revealed that Co3O4 was obviously dispersed into the Zn matrix. The addition of NaoI effectively increased the deposited amount of Co3O4 in the Co3O4-Zn coatings. Besides, the antimicrobial performance of the Co3O4-Zn coatings was evaluated with three typical fouling bacteria, namely, Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa). Results showed that the coverage of these three bacteria on Co3O4-Zn coatings decreased over 98%, illustrating that the Co3O4-Zn coatings showed high and broad-spectrum antimicrobial performance. It was also found that the Co3O4-Zn coating in the presence of hydrogen peroxide (H2O2) produced superoxide radicals (·O2-) and hydroxyl radicals (·OH), which played dominant roles in the antimicrobial process. Finally, the antimicrobial stability and corrosion resistance of the composite coatings were also verified, and it was found that the composite coatings exhibited good antimicrobial stability and corrosion resistance characteristics. The results of this study provide a new possibility for the development of bactericidal coatings of simulated enzyme catalyst and a new solution for green antifouling.

Key wordsCo3O4-Zn coating    ultrasound assistance    simulated enzyme-catalyzed antimicrobial    electrodeposition    sodium oleate
收稿日期: 2023-11-21      32134.14.1005.4537.2023.371
ZTFLH:  TG174  
基金资助:国家自然科学基金(42376204);山东省自然科学基金(ZR2022MD023);青岛海洋科学与技术试点国家实验室山东省专项经费“问海计划”项目(2021WHZZB2303);中国科协青年人才托举计划(YESS20210201)
通讯作者: 翟晓凡,E-mail: zhaixf@qdio.ac.cn,研究方向为海洋微生物腐蚀与防治段继周,E-mail: duanjz@qdio.ac.cn,研究方向为海洋微生物腐蚀与生物污损的基础和应用研究王优强,E-mail: wyq1970301@126.com,研究方向为摩擦学与表面工程
Corresponding author: ZHAI Xiaofan, E-mail: zhaixf@qdio.ac.cnDUAN Jizhou, E-mail: duanjz@qdio.ac.cn
作者简介: 蒋 泽,男,1994年生,硕士生

Zn

composite

coating

Co3O4

concentration in electrolyte

g·L-1

NaOI

concentration in electrolyte

mol·L-1

Time

min

Ultrasonic

intensity

W

Stirring

rate

r·min-1

pH

Current density

mA·cm-2

ZB--30306003-420
ZY-0.00530306003-420
ZC5-30306003-420
ZCY50.00530306003-420
表1  镀层的电沉积参数
图1  ZB,ZY,ZC和ZCY镀层的微观形貌
图2  Co3O4粉体和ZCY的SEM像及相应的EDS结果
图3  ZCY横截面的SEM像,及图中区域1的SEM像和EDS结果和区域2的SEM像和EDS线扫描结果
Composite coatingCo / atomic fraction, %Zn / atomic fraction, %Co / Zn atomic ratio
ZB098.909/
ZY099.325/
ZC1.16197.4050.012
ZCY2.99793.0770.032
表2  EDS测试的复合镀层中Co和Zn含量
图4  镀层中Co3O4和Zn对应的XRD谱
图5  ZB、ZY、ZC和ZCY镀层电沉积过程中的电化学分析及用于拟合EIS数据的等效电路
图6  在加入和不加入过氧化氢的大肠杆菌溶液中浸泡2 h后ZB、ZY、ZC和ZCY镀层的荧光显微镜图像,及镀层上细菌覆盖率的相应直方图
图7  在加入H2O2的大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌溶液中浸泡2 h后ZB和ZCY镀层的荧光显微镜图像和细菌覆盖率的相应直方图
图8  ZB和ZCY复合镀层在大肠杆菌溶液中持续8个循环期间的荧光显微镜图像及细菌覆盖率变化
图9  ZB和ZCY镀层在海水中的电化学测试结果以及EIS拟合等效电路图
GroupEcorr / V vs SCEIcorr / A·cm-2
ZB + Nacl-1.223350313.46 × 10-5
ZCY + Nacl-1.137499291.51 × 10-5
ZB + NaCl + H2O2-1.303865317.34 × 10-5
ZCY + NaCl + H2O2-1.243350314.17 × 10-5
表3  根据图9c的Tafel曲线计算出的自腐蚀电位和自腐蚀电流密度
图10  ZB和ZCY镀层在添加清除剂后在不加入和加入过氧化氢条件下的荧光显微镜图像,细菌覆盖率的相应直方图,以及ZCY的⋅O2-、h+和⋅OH的EPR光谱
图11  Co3O4-Zn复合镀层杀菌机理示意图
图12  Co3O4粉末在添加清除剂后在不加入和加入H2O2菌液中的杀菌情况
1 Al-Saadi S, Singh Raman R K. Silane coatings for corrosion and microbiologically influenced corrosion resistance of mild steel: a review [J]. Materials (Basel), 2022, 15: 7809
2 Bharatiya U, Gal P, Agrawal A, et al. Effect of corrosion on crude oil and natural gas pipeline with emphasis on prevention by ecofriendly corrosion inhibitors: a comprehensive review [J]. J. Bio- Tribo-Corros., 2019, 5: 35
3 Heyer A, D'Souza F, Leon Morales C F, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
4 Loto C A. Microbiological corrosion: mechanism, control and impact—a review [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 4241
5 Abioye O P, Loto C A, Fayomi O S I. Evaluation of anti-biofouling progresses in marine application [J]. J. Bio- Tribo-Corros., 2019, 5: 22
6 Saleem Khan M, Liang T, Liu Y Z, et al. Microbiologically influenced corrosion mechanism of ferrous alloys in marine environment [J]. Metals, 2022, 12: 1458
7 Punith Kumar M K, Rekha M Y, Srivastava C. Electrogalvanization using new generation coatings with carbonaceous additives: progress and challenges [J]. Corros. Rev., 2021, 39: 15
8 Oluwole O O, Oloruntoba D T, Awheme O. Effect of zinc plating of low carbon steel on corrosion resistance in cocoa fluid environment [J]. Mater. Des., 2008, 29: 1266
9 Klekotka M, Zielińska K, Stankiewicz A, et al. Tribological and anticorrosion performance of electroplated zinc based nanocomposite coatings [J]. Coatings, 2020, 10: 594
10 Zhai X F, Sun C T, Li K, et al. Synthesis and characterization of chitosan-zinc composite electrodeposits with enhanced antibacterial properties [J]. RSC Adv., 2016, 6: 46081
11 Zhai X F, Sun C T, Li K, et al. Composite deposition mechanism of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one in zinc films for enhanced corrosion resistant properties [J]. J. Ind. Eng. Chem., 2016, 36: 147
12 Zhai X F, Myamina M, Duan J Z, et al. Microbial corrosion resistance of galvanized coatings with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes [J]. Corros. Sci., 2013, 72: 99
13 Kumar C M P, Lakshmikanthan A, Chandrashekarappa M P G, et al. Electrodeposition based preparation of Zn-Ni alloy and Zn-Ni-WC Nano-composite coatings for corrosion-resistant applications [J]. Coatings, 2021, 11: 712
14 Silva-Ichante M, Reyes-Vidal Y, Bácame-Valenzuela F J, et al. Electrodeposition of antibacterial Zn-Cu/silver nanoparticle (AgNP) composite coatings from an alkaline solution containing glycine and AgNPs [J]. J. Electroanal. Chem., 2018, 823: 328
15 Castro-Rodríguez B, Terán-López A, Reyes-Vidal Y, et al. Zinc/Silver Particle (Zn/AgP) composite coatings: evaluation of corrosion in physiological environments and antibacterial activity against P. aeruginosa [J]. Coatings, 2020, 10: 337
16 García-Lecina E, García-Urrutia I, Díez J A, et al. A comparative study of the effect of mechanical and ultrasound agitation on the properties of electrodeposited Ni/Al2O3 nanocomposite coatings [J]. Surf. Coat. Technol., 2012, 206: 2998
17 Beltowska-Lehman E, Bigos A, Indyka P, et al. Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites [J]. J. Electroanal. Chem., 2018, 813: 39
18 Nath P, Sahu D K, Mallik A. Physicochemical and corrosion properties of sono-electrodeposited Cu-Ni thin films [J]. Surf. Coat. Technol., 2016, 307: 772
19 Zargazi M, Entezari M H. Ultrasound assisted deposition of highly stable self-assembled Bi2MoO6 nanoplates with selective crystal facet engineering as photoanode [J]. Ultrason. Sonochem., 2020, 67: 105145
20 Safavi M S, Walsh F C. Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits [J]. Surf. Coat. Technol., 2021, 422: 127564
21 Zarebidaki A, Allahkaram S R. Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings [J]. J. Alloy. Compd., 2011, 509: 1836
22 Yuan J C, Shiller A M. Hydrogen peroxide in deep waters of the North Pacific Ocean [J]. Geophys. Res. Lett., 2004, 31: L01310
23 Diaz J M, Plummer S, Tomas C, et al. Production of extracellular superoxide and hydrogen peroxide by five marine species of harmful bloom-forming algae [J]. J. Plankton Res., 2018, 40: 667
doi: 10.1093/plankt/fby043 pmid: 30487659
24 Wu L H, Luo Y, Wang C F, et al. Self-driven electron transfer biomimetic enzymatic catalysis of bismuth-doped PCN-222 MOF for rapid therapy of bacteria-infected wounds [J]. ACS Nano, 2023, 17: 1448
25 Mu J S, Wang Y, Zhao M, et al. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles [J]. Chem. Commun., 2012, 48: 2540
26 Dong J L, Song L N, Yin J J, et al. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay [J]. ACS Appl. Mater. Interfaces, 2014, 6: 1959
27 Yang H G, Yang R T, Zhang P, et al. A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide [J]. Microchim. Acta, 2017, 184: 4629
28 Zhuang Y X, Zhang X D, Chen Q M, et al. Co3O4/CuO hollow nanocage hybrids with high oxidase-like activity for biosensing of dopamine [J]. Mater. Sci. Eng., 2019, 94C: 858
29 Alizadeh N, Salimi A, Hallaj R. Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone [J]. Sens. Actuators, 2019, 288B: 44
30 Chen J, Shan M D, Zhu H J, et al. Antimicrobial properties of heterojunction BiSnSbO6-ZnO composites in wastewater treatment [J]. Environ. Sci. Pollut. Res., 2023, 30: 55498
31 Polyakov N A, Botryakova I G, Glukhov V G, et al. Formation and anticorrosion properties of superhydrophobic zinc coatings on steel [J]. Chem. Eng. J., 2021, 421: 127775
32 Otani T, Fukunaka Y, Homma T. Effect of lead and tin additives on surface morphology evolution of electrodeposited zinc [J]. Electrochim. Acta, 2017, 242: 364
33 Nanda B, Mallik M. Production of copper powder by electrodeposition with different equilibrium crystal shape [J]. Trans. Indian Inst. Met., 2020, 73: 2113
34 Li H Y, Liu Y C, Liu J, et al. A Wulff-type boronate for boronate affinity capture of cis-diol compounds at medium acidic pH condition [J]. Chem. Commun., 2011, 47: 8169
35 Nayana K O, Venkatesha T V. Bright zinc electrodeposition and study of influence of synergistic interaction of additives on coating properties [J]. J. Ind. Eng. Chem., 2015, 26: 107
36 Mackinnon D J, Brannen J M, Fenn P L. Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte [J]. J. Appl. Electrochem., 1987, 17: 1129
37 Sun K E K, Hoang T K A, Doan T N L, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries [J]. ACS Appl. Mater. Interfaces, 2017, 9: 9681
38 Gunawardena G, Hills G, Montenegro I. Electrochemical nucleation: Part II. The electrodeposition of silver on vitreous carbon [J]. J. Electroanal. Chem. Interfacial Electrochem., 1982, 138: 241
39 Zhai X F, Ju P, Guan F, et al. Electrodeposition of capsaicin-induced ZnO/Zn nanopillar films for marine antifouling and antimicrobial corrosion [J]. Surf. Coat. Technol., 2020, 397: 125959
40 Wang J, Wang Y, Zhang D. Exploring the bactericidal performance and application of novel mimic enzyme Co4S3 [J]. J. Colloid Interface Sci., 2020, 561: 327
41 Liu T J, Zhang X Y, Fu K, et al. Fabrication of Co3O4/NiCo2O4 nanocomposite for detection of H2O2 and dopamine [J]. Biosensors (Basel), 2021, 11: 452
42 Jiang D, Cui H Z, Chen H, et al. Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic [J]. Mater. Des., 2021, 210: 110068
43 Liu H, Ding Y N, Yang B C, et al. Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeO x nanocomposites with enhanced peroxidase-like performance [J]. Sens. Actuators, 2018, 271B: 336
44 Liu Q Y, Zhu R R, Du H, et al. Higher catalytic activity of porphyrin functionalized Co3O4 nanostructures for visual and colorimetric detection of H2O2 and glucose [J]. Mater. Sci. Eng., 2014, 43C: 321
[1] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[2] 陈惠敏, 王帅星, 张骐, 詹中伟, 杜楠. 5,5-二甲基乙内酰脲配位体系中银的电沉积行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 896-902.
[3] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[4] 窦建业, 屈少鹏, 轩星雨. 铈离子修饰SiO2膜层在模拟深海条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 258-266.
[5] 张陈扬, 刘慧丛, 韩东晓, 朱立群, 李卫平. 微米级SiC/Ni-Co-P复合镀层的制备及影响因素[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[6] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[8] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[9] 周琼宇,王小芬,钟庆东,王操,胡一峰. 镀液pH值对电沉积Ni-W合金镀层结构及其耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 457-462.
[10] 骆立立, 费敬银, 王磊, 林西华, 王少兰. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
[11] 李园园, 杜楠, 舒伟发, 王帅星, 赵晴. 碱性锌酸盐体系中Zn的电沉积行为研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 89-94.
[12] 张午花, 费敬银, 骆立立, 林西华. 脉冲电沉积高速Ni工艺研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 317-324.
[13] 陈叶,费敬银,王磊,万冰华. 脉冲电沉积法制备高P镍基合金镀层[J]. 中国腐蚀与防护学报, 2012, 32(6): 501-506.
[14] 万冰华,费敬银,冯光勇,张午花,王少兰. Zn-Co-TiO2纳米复合镀层的光生阴极保护特性[J]. 中国腐蚀与防护学报, 2012, 32(4): 327-332.
[15] 杨青松,李纯,王杰,杨仲年,张昭,张鉴清. 阳极电沉积制备CeO2薄膜[J]. 中国腐蚀与防护学报, 2012, 32(1): 34-38.