|
|
Co3O4-Zn复合镀层制备及其模拟酶催化防污活性研究 |
蒋泽1,2,3, 翟晓凡2,3( ), 张雨2,3, 孙佳文2,3, 蒋全通2,3, 王优强1( ), 段继周2,3( ), 侯保荣2,3 |
1 青岛理工大学机械与汽车工程学院 青岛 266520 2 中国科学院海洋研究所海洋环境腐蚀与生物污损重点实验室 青岛 266071 3 海洋科学与技术试点国家实验室(青岛)海洋腐蚀与防护开放工作室 青岛 266235 |
|
Preparation of Co3O4-Zn Composite Coating and Its Simulated Antifouling Activity of Enzymes Catalyst |
JIANG Ze1,2,3, ZHAI Xiaofan2,3( ), ZHANG Yu2,3, SUN Jiawen2,3, JIANG Quantong2,3, WANG Youqiang1( ), DUAN Jizhou2,3( ), HOU Baorong2,3 |
1 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China 2 CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 3 Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, China |
引用本文:
蒋泽, 翟晓凡, 张雨, 孙佳文, 蒋全通, 王优强, 段继周, 侯保荣. Co3O4-Zn复合镀层制备及其模拟酶催化防污活性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1164-1176.
Ze JIANG,
Xiaofan ZHAI,
Yu ZHANG,
Jiawen SUN,
Quantong JIANG,
Youqiang WANG,
Jizhou DUAN,
Baorong HOU.
Preparation of Co3O4-Zn Composite Coating and Its Simulated Antifouling Activity of Enzymes Catalyst[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1164-1176.
1 |
Al-Saadi S, Singh Raman R K. Silane coatings for corrosion and microbiologically influenced corrosion resistance of mild steel: a review [J]. Materials (Basel), 2022, 15: 7809
|
2 |
Bharatiya U, Gal P, Agrawal A, et al. Effect of corrosion on crude oil and natural gas pipeline with emphasis on prevention by ecofriendly corrosion inhibitors: a comprehensive review [J]. J. Bio- Tribo-Corros., 2019, 5: 35
|
3 |
Heyer A, D'Souza F, Leon Morales C F, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
|
4 |
Loto C A. Microbiological corrosion: mechanism, control and impact—a review [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 4241
|
5 |
Abioye O P, Loto C A, Fayomi O S I. Evaluation of anti-biofouling progresses in marine application [J]. J. Bio- Tribo-Corros., 2019, 5: 22
|
6 |
Saleem Khan M, Liang T, Liu Y Z, et al. Microbiologically influenced corrosion mechanism of ferrous alloys in marine environment [J]. Metals, 2022, 12: 1458
|
7 |
Punith Kumar M K, Rekha M Y, Srivastava C. Electrogalvanization using new generation coatings with carbonaceous additives: progress and challenges [J]. Corros. Rev., 2021, 39: 15
|
8 |
Oluwole O O, Oloruntoba D T, Awheme O. Effect of zinc plating of low carbon steel on corrosion resistance in cocoa fluid environment [J]. Mater. Des., 2008, 29: 1266
|
9 |
Klekotka M, Zielińska K, Stankiewicz A, et al. Tribological and anticorrosion performance of electroplated zinc based nanocomposite coatings [J]. Coatings, 2020, 10: 594
|
10 |
Zhai X F, Sun C T, Li K, et al. Synthesis and characterization of chitosan-zinc composite electrodeposits with enhanced antibacterial properties [J]. RSC Adv., 2016, 6: 46081
|
11 |
Zhai X F, Sun C T, Li K, et al. Composite deposition mechanism of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one in zinc films for enhanced corrosion resistant properties [J]. J. Ind. Eng. Chem., 2016, 36: 147
|
12 |
Zhai X F, Myamina M, Duan J Z, et al. Microbial corrosion resistance of galvanized coatings with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes [J]. Corros. Sci., 2013, 72: 99
|
13 |
Kumar C M P, Lakshmikanthan A, Chandrashekarappa M P G, et al. Electrodeposition based preparation of Zn-Ni alloy and Zn-Ni-WC Nano-composite coatings for corrosion-resistant applications [J]. Coatings, 2021, 11: 712
|
14 |
Silva-Ichante M, Reyes-Vidal Y, Bácame-Valenzuela F J, et al. Electrodeposition of antibacterial Zn-Cu/silver nanoparticle (AgNP) composite coatings from an alkaline solution containing glycine and AgNPs [J]. J. Electroanal. Chem., 2018, 823: 328
|
15 |
Castro-Rodríguez B, Terán-López A, Reyes-Vidal Y, et al. Zinc/Silver Particle (Zn/AgP) composite coatings: evaluation of corrosion in physiological environments and antibacterial activity against P. aeruginosa [J]. Coatings, 2020, 10: 337
|
16 |
García-Lecina E, García-Urrutia I, Díez J A, et al. A comparative study of the effect of mechanical and ultrasound agitation on the properties of electrodeposited Ni/Al2O3 nanocomposite coatings [J]. Surf. Coat. Technol., 2012, 206: 2998
|
17 |
Beltowska-Lehman E, Bigos A, Indyka P, et al. Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites [J]. J. Electroanal. Chem., 2018, 813: 39
|
18 |
Nath P, Sahu D K, Mallik A. Physicochemical and corrosion properties of sono-electrodeposited Cu-Ni thin films [J]. Surf. Coat. Technol., 2016, 307: 772
|
19 |
Zargazi M, Entezari M H. Ultrasound assisted deposition of highly stable self-assembled Bi2MoO6 nanoplates with selective crystal facet engineering as photoanode [J]. Ultrason. Sonochem., 2020, 67: 105145
|
20 |
Safavi M S, Walsh F C. Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits [J]. Surf. Coat. Technol., 2021, 422: 127564
|
21 |
Zarebidaki A, Allahkaram S R. Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings [J]. J. Alloy. Compd., 2011, 509: 1836
|
22 |
Yuan J C, Shiller A M. Hydrogen peroxide in deep waters of the North Pacific Ocean [J]. Geophys. Res. Lett., 2004, 31: L01310
|
23 |
Diaz J M, Plummer S, Tomas C, et al. Production of extracellular superoxide and hydrogen peroxide by five marine species of harmful bloom-forming algae [J]. J. Plankton Res., 2018, 40: 667
doi: 10.1093/plankt/fby043
pmid: 30487659
|
24 |
Wu L H, Luo Y, Wang C F, et al. Self-driven electron transfer biomimetic enzymatic catalysis of bismuth-doped PCN-222 MOF for rapid therapy of bacteria-infected wounds [J]. ACS Nano, 2023, 17: 1448
|
25 |
Mu J S, Wang Y, Zhao M, et al. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles [J]. Chem. Commun., 2012, 48: 2540
|
26 |
Dong J L, Song L N, Yin J J, et al. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay [J]. ACS Appl. Mater. Interfaces, 2014, 6: 1959
|
27 |
Yang H G, Yang R T, Zhang P, et al. A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide [J]. Microchim. Acta, 2017, 184: 4629
|
28 |
Zhuang Y X, Zhang X D, Chen Q M, et al. Co3O4/CuO hollow nanocage hybrids with high oxidase-like activity for biosensing of dopamine [J]. Mater. Sci. Eng., 2019, 94C: 858
|
29 |
Alizadeh N, Salimi A, Hallaj R. Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone [J]. Sens. Actuators, 2019, 288B: 44
|
30 |
Chen J, Shan M D, Zhu H J, et al. Antimicrobial properties of heterojunction BiSnSbO6-ZnO composites in wastewater treatment [J]. Environ. Sci. Pollut. Res., 2023, 30: 55498
|
31 |
Polyakov N A, Botryakova I G, Glukhov V G, et al. Formation and anticorrosion properties of superhydrophobic zinc coatings on steel [J]. Chem. Eng. J., 2021, 421: 127775
|
32 |
Otani T, Fukunaka Y, Homma T. Effect of lead and tin additives on surface morphology evolution of electrodeposited zinc [J]. Electrochim. Acta, 2017, 242: 364
|
33 |
Nanda B, Mallik M. Production of copper powder by electrodeposition with different equilibrium crystal shape [J]. Trans. Indian Inst. Met., 2020, 73: 2113
|
34 |
Li H Y, Liu Y C, Liu J, et al. A Wulff-type boronate for boronate affinity capture of cis-diol compounds at medium acidic pH condition [J]. Chem. Commun., 2011, 47: 8169
|
35 |
Nayana K O, Venkatesha T V. Bright zinc electrodeposition and study of influence of synergistic interaction of additives on coating properties [J]. J. Ind. Eng. Chem., 2015, 26: 107
|
36 |
Mackinnon D J, Brannen J M, Fenn P L. Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte [J]. J. Appl. Electrochem., 1987, 17: 1129
|
37 |
Sun K E K, Hoang T K A, Doan T N L, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries [J]. ACS Appl. Mater. Interfaces, 2017, 9: 9681
|
38 |
Gunawardena G, Hills G, Montenegro I. Electrochemical nucleation: Part II. The electrodeposition of silver on vitreous carbon [J]. J. Electroanal. Chem. Interfacial Electrochem., 1982, 138: 241
|
39 |
Zhai X F, Ju P, Guan F, et al. Electrodeposition of capsaicin-induced ZnO/Zn nanopillar films for marine antifouling and antimicrobial corrosion [J]. Surf. Coat. Technol., 2020, 397: 125959
|
40 |
Wang J, Wang Y, Zhang D. Exploring the bactericidal performance and application of novel mimic enzyme Co4S3 [J]. J. Colloid Interface Sci., 2020, 561: 327
|
41 |
Liu T J, Zhang X Y, Fu K, et al. Fabrication of Co3O4/NiCo2O4 nanocomposite for detection of H2O2 and dopamine [J]. Biosensors (Basel), 2021, 11: 452
|
42 |
Jiang D, Cui H Z, Chen H, et al. Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic [J]. Mater. Des., 2021, 210: 110068
|
43 |
Liu H, Ding Y N, Yang B C, et al. Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeO x nanocomposites with enhanced peroxidase-like performance [J]. Sens. Actuators, 2018, 271B: 336
|
44 |
Liu Q Y, Zhu R R, Du H, et al. Higher catalytic activity of porphyrin functionalized Co3O4 nanostructures for visual and colorimetric detection of H2O2 and glucose [J]. Mater. Sci. Eng., 2014, 43C: 321
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|