Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 193-199    DOI: 10.11902/1005.4537.2021.070
  研究报告 本期目录 | 过刊浏览 |
熔盐堆用结构材料的热腐蚀及防护
吴家杰, 王艳丽()
广西大学化学化工学院 南宁 530004
Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor
WU Jiajie, WANG Yanli()
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
全文: PDF(1122 KB)   HTML
摘要: 

本文综述了结构材料在熔融氟化盐中的热腐蚀及其影响因素,以及表面防护涂层研究现状。

关键词 熔盐堆氟化盐热腐蚀涂层    
Abstract

As one of the Gen-IV (Generation Four Initiative) alternative reactors, molten salt reactor (MSR) has become a popular research topic again in recent years. Molten fluorides act as the nuclear fuel carrier and coolant in MSR. However, its highly corrosive to structural materials is a great barrier of the MSR development. The active dissolution of alloying elements is the main result of hot corrosion. Trace impurities, the formation of galvanic couples between different materials and temperature gradient in the molten salt system are the main driving forces of hot corrosion. The research status of hot corrosion and surface protection for structural materials in molten fluoride salts by domestic and foreign researchers are reviewed in the present article.

Key wordsmolten salt reactor    fluorides    hot corrosion    coating
收稿日期: 2021-04-06     
ZTFLH:  TG178  
基金资助:广西科技基地和人才专项(桂科AD20159074);国家自然科学基金(51801035);广西研究生教育创新计划(YCSW2021056)
通讯作者: 王艳丽     E-mail: wyl187358@gxu.edu.cn
Corresponding author: WANG Yanli     E-mail: wyl187358@gxu.edu.cn
作者简介: 吴家杰,男,1997年生,硕士生

引用本文:

吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
Jiajie WU, Yanli WANG. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 193-199.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.070      或      https://www.jcscp.org/CN/Y2022/V42/I2/193

图1  温度梯度腐蚀“质量转移过程”示意图[24]
图2  不同保护层下材料长期在氟化盐浸泡后活性元素分布图[37]
1 Rosenthal M W, Kasten P R, Briggs R B. Molten-salt reactors-history, status, and potential [J]. Nucl. Appl. Technol., 1970, 8: 107
2 Qiu S Z, Zhang D L, Su G H, et al. Research on inherent safety and relative key issues of a molten salt reactor [J]. Atomic Energy Sci. Techol., 2009, 43(suppl.1): 64
2 秋穗正, 张大林, 苏光辉等. 新概念熔盐堆的固有安全性及相关关键问题研究 [J]. 原子能科学技术, 2009, 43(): 64
3 Jiang M H, Xu H J, Dai Z M. Advanced fission energy program-TMSR nuclear energy system [J]. Bull. Chin. Acad. Sci., 2012, 27: 366
3 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能—TMSR核能系统 [J]. 中国科学院院刊, 2012, 27: 366
4 Xie W C. China's molten salt reactor technology is at the international advanced level [N]. China Electric Power News, 2015-10-17
4 谢文川. 我国熔盐堆技术处于国际先进水平 [N]. 中国电力报, 2015-10-17
5 You B J. Study on corrosion behavior of nickel-based alloys in FLiNaK molten salt [D]. Beijing: Tsinghua University, 2010
5 游柏坚. 镍基合金于FLiNaK融盐之腐蚀行为研究 [D]. 北京: 清华大学, 2010
6 MacPherson H G. The molten salt reactor adventure [J]. Nucl. Sci. Eng., 1985, 90: 374
7 Holcomb D E, Cetiner S M, Flanagan G F, et al. An analysis of testing requirements for fluoride salt cooled high temperature reactor components [R]. Oak Ridge, Tennessee: ORNL, 2009
8 Cottrell W B, Crabtree T E, Davis A L, et al. Disassembly and postoperative examination of the aircraft reactor experiment [R]. Oak Ridge, Tennessee: ORNL, 1958
9 Olson L C, Ambrosek J W, Sridharan K, et al. Materials corrosion in molten LiF-NaF-KF salt [J]. J. Fluorine Chem., 2009, 130: 67
10 Patel N S, Pavlík V, Kubíková B, et al. Corrosion behaviour of Ni-based superalloys in molten FLiNaK salts [J]. Corros. Eng., Sci. Technol., 2019, 54: 46
11 Ye X X, Ai H, Guo Z, et al. The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS [J]. Corros. Sci., 2016, 106: 249
12 Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
12 丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
13 Kok D J. The effect of FLiNaK molten salt corrosion on the hardness of hastelloy N [J]. ELAIA, 2019, 2: 9
14 Ouyang F Y, Chang C H, You B C, et al. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments [J]. J. Nucl. Mater., 2013, 437: 201
15 Wang Y L, Wang Q, Liu H J, et al. Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li,Na,K) F [J]. Corros. Sci., 2016, 103: 268
16 Doniger W H, Falconer C, Elbakhshwan M, et al. Investigation of impurity driven corrosion behavior in molten 2LiF-BeF2 salt [J]. Corros. Sci., 2020, 174: 108823
17 Qin Y Q, Zuo Y, Shen M. Corrosion inhibition of 316L stainless steel in FLiNaK-CrF3/CrF2 redox buffering molten salt system [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 182
17 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 182
18 Liu Q, Leng B, Qiu J, et al. Effect of graphite particles in molten LiF-NaF-KF eutectic salt on corrosion behaviour of GH3535 alloy [J]. Corros. Sci., 2020, 168: 108581
19 Liu Q, Sun H, Yin H Q, et al. Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles [J]. Corros. Sci., 2019, 160: 108174
20 Xu Y X, Wang Y L, Zeng C L. Electrochemical studies of the corrosion of pure Fe, Ni and Cr in molten (Li, Na, K) F [J]. High Temp. Mater. Proc., 2014, 33: 269
21 Sun H, Ding X B, Ai H, et al. Interaction mechanisms of a Hastelloy N-316L stainless steel couple in molten LiF-NaF-KF salt [J]. Corros. Sci., 2020, 164: 108317
22 Zuo Y, Qin Y Q, Shen M, et al. Effect of Cr2+/Cr3+ on galvanic corrosion inhibition of dissimilar metallic materials in 46.5%LiF-11.5%NaF-42.0%KF molten salts system [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 341
22 左勇, 秦越强, 申淼等. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 341
23 Qiu J, Wu A J, Li Y H, et al. Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt [J]. Corros. Sci., 2020, 170: 108677
24 Koger J W. Effect of FeF2 addition on mass transfer in a Hastelloy N-LiF-BeF2-UF4 thermal convection loop system [R]. Oak Ridge, Tennessee: ORNL, 1972
25 Wang Y L, Zeng C L, Li W H. The influence of temperature gradient on the corrosion of materials in molten fluorides [J]. Corros. Sci., 2018, 136: 180
26 Liu Y H, Yang C, Wang X J, et al. Coating technique on structural materials of molten salt reactor [J]. Chin. J. Rare Met., 2016, 40: 908
26 刘艳红, 杨超, 王晓婧等. 熔盐堆结构材料的涂层技术研究 [J]. 稀有金属, 2016, 40: 908
27 Sawant S S, Gajbhiye B D, Tyagi S, et al. High temperature corrosion studies in molten salt using salt purification and alloy coating [J]. Indian Chem. Eng., 2017, 59: 242
28 Cheng W J, Sellers R S, Anderson M H, et al. Zirconium effect on the corrosion behavior of 316L stainless steel alloy and hastelloy-N superalloy in molten fluoride salt [J]. Nucl. Technol., 2013, 183: 248
29 Zhu H M, Li B C, Chen M H, et al. Improvement of corrosion resistance of hastelloy-N alloy in LiF-NaF-KF molten salt by laser cladding pure metallic coatings [J]. Coatings, 2018, 8: 322
30 Morell-Pacheco A, Kim H, Wang T Y, et al. Ni coating on 316L stainless steel using cage plasma treatment: Feasibility and swelling studies [J]. J. Nucl. Mater., 2020, 540: 152385
31 Zhang Y C, Liu Y H, Zhou Z J, et al. Research on protective coating on inner surface of alloy tube [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 230: 012018
32 Olson L, Sridharan K, Anderson M, et al. Nickel-plating for active metal dissolution resistance in molten fluoride salts [J]. J. Nucl. Mater., 2011, 411: 51
33 Zheng J Y, Yu X H, Liu M, et al. SR X-ray analysis of Ni-based alloys corroded in molten fluoride salt [J]. Nucl. Tech., 2011, 34: 336
33 郑俊义, 余笑寒, 刘敏等. 镍基合金受熔融氟化盐腐蚀的同步辐射XRF分析 [J]. 核技术, 2011, 34: 336
34 Zhu H L, Holmes R, Hanley T, et al. High-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt [J]. Corros. Sci., 2015, 91: 1
35 Briggs R B. Molten-salt reactor program semiannual progress report for period ending January 31, 1964 [R]. Oak Ridge, Tennessee: ORNL, 1964
36 Jiang D L. Recent research progress of high performance ceramics [J]. Mater. China, 2009, 28(12): 26
36 江东亮. 高性能陶瓷的研究进展 [J]. 中国材料进展, 2009, 28(12): 26
37 Liu T, Dong J S, Xie G, et al. Corrosion behavior of GH3535 superalloy in FLiNaK molten salt [J]. Acta Metall. Sin., 2015, 51: 1059
37 刘涛, 董加胜, 谢光等. GH3535合金在FLiNaK熔盐中的腐蚀行为 [J]. 金属学报, 2015, 51: 1059
38 Sabioni A C S, Huntz A M, Silva F, et al. Diffusion of iron in Cr2O3: polycrystals and thin films [J]. Mater. Sci. Eng., 2005, 392A: 254
39 Xu Y X, Luo X T, Li C X, et al. Formation of Cr2O3 diffusion barrier between Cr-contained stainless steel and cold-sprayed Ni coatings at high temperature [J]. J. Therm. Spray Technol., 2016, 25: 526
40 Xu Y X, Chirol M, Li C J, et al. Formation of Al2O3 diffusion barrier in cold-sprayed NiCoCrAlY/Ni multi-layered coatings on 304SS substrate [J]. Surf. Coat. Technol., 2016, 307: 603
41 Cai Y, Li J P, Lu F, et al. Structure and antioxidation behavior of TiC diffusion barrier prepared by arc ion plating [J]. Vacuum, 2010, 47(5): 5
41 蔡妍, 李建平, 陆峰等. 电弧离子镀TiC扩散障结构及抗高温氧化性能研究 [J]. 真空, 2010, 47(5): 5
42 Lima C R C, Cinca N, Guilemany J M. Study of the high temperature oxidation performance of thermal barrier coatings with HVOF sprayed bond coat and incorporating a PVD ceramic interlayer [J]. Ceram. Int., 2012, 38: 6423
43 Wang C X, Chen W, Chen M H, et al. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃ [J]. J. Mater. Sci. Technol., 2020, 45: 125
44 Watanabe T, Kondo M, Nagasaka T, et al. Corrosion characteristic of AlN, Y2O3, Er2O3 and Al2O3 in Flinak for molten salt blanket system [J]. J. Plasma Fusion Res. Ser., 2010, 9: 342
45 Du H L, Datta P K, Griffin D, et al. Oxidation and sulfidation behavior of AlTiN-coated Ti-46.7Al-1.9W-0.5Si intermetallic with CrN and NbN diffusion barriers at 850°C [J]. Oxid. Met., 2003, 60: 29
46 Brupbacher M C, Zhang D J, Buchta W M, et al. Synthesis and characterization of binder-free Cr3C2 coatings on nickel-based alloys for molten fluoride salt corrosion resistance [J]. J. Nucl. Mater., 2015, 461: 215
47 Su X Z, Zhao S F, Hou J, et al. Formation of chromium carbide coatings on HT250 steel by thermal diffusion processes in fluoride molten salt bath [J]. Vacuum, 2018, 155: 219
48 Wang Y, Tang Z F, Fu Y, et al. Corrosion behavior of ZrC-SiC composite ceramics in LiF-NaF-KF molten salt at high temperatures [J]. Ceram. Int., 2015, 41: 12996
49 He X J, Song J L, Tan J, et al. SiC coating: an alternative for the protection of nuclear graphite from liquid fluoride salt [J]. J. Nucl. Mater., 2014, 448: 1
50 Zhu H M, Li B C, Chen M H, et al. AlN coatings on Hastelloy-N alloy offering superior corrosion resistance in LiF-KF-NaF molten salt [J]. J. Fluorine Chem., 2018, 213: 80
51 Wang C X. Study on diffusion barriers against interdiffusion of Ni/GH3535 system in molten fluoride envionment [D]. Hefei: University of Science and Technology of China, 2020
51 王成旭. 熔融氟盐环境中Ni/GH3535体系的扩散障设计研究 [D]. 合肥: 中国科学技术大学, 2020
52 Wang C X, Chen W, Chen M H, et al. Corrosion behavior and elements interdiffusion between a Ni coating and GH3535 alloy with and without a CrN barrier in molten fluoride salts [J]. J. Nucl. Mater., 2019, 514: 348
53 Li X L. The effects of yttrium on microstructure and high-temperature corrosion resistance of GH3535 superalloy [D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015
53 李晓丽. 稀土Y对GH3535高温合金微观结构和抗高温腐蚀性能的影响 [D]. 上海: 中国科学院研究生院 (上海应用物理研究所), 2015
54 Li X L, He S M, Zhou X T, et al. High-temperature corrosion behavior of Ni-16Mo-7Cr-4Fe superalloy containing yttrium in molten LiF-NaF-KF salt [J]. J. Nucl. Mater., 2015, 464: 342
55 Wang Q, Zhang L, Zhai L L, et al. In-situ synthesis of silicide coatings on molybdenum substrates by electrodeposition in chloride-fluoride molten salts [J]. Int. J. Refract. Met. Hard Mater., 2019, 82: 340
[1] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[2] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[3] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[4] 高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[5] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[6] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[7] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[8] 安亮, 高昌琦, 贾建刚, 马勤. 金属硅化物抗氧化涂层的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
[9] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[12] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[13] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[14] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[15] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.