Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 481-493     CSTR: 32134.14.1005.4537.2022.199      DOI: 10.11902/1005.4537.2022.199
  研究报告 本期目录 | 过刊浏览 |
pH值、温度和盐度对B30铜镍合金在海水中成膜的影响
陈翰林1, 马力2, 黄国胜2, 杜敏1()
1.中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
2.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater
CHEN Hanlin1, MA Li2, HUANG Guosheng2, DU Min1()
1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
全文: PDF(13728 KB)   HTML
摘要: 

对B30铜镍合金在海水中成膜的影响因素进行研究,确定最佳成膜条件,从而抑制B30铜镍合金在使用过程中发生点蚀等严重腐蚀损坏现象。采用电化学阻抗谱 (EIS)、X射线光电子能谱 (XPS) 和激光共聚焦显微镜 (CLSM) 等方法研究了海水的pH、温度以及盐度对B30铜镍合金成膜的影响。在pH为6.6~9.8的海水中,随着pH值的增大,膜层致密性、完整性及保护性呈现先变好再变差的趋势;温度在2~36 ℃的范围内,随着海水中温度的提高,膜层呈现先变差再变好的趋势;盐度在20~36的范围内,随着盐度的提高,膜层呈现先变差再变好的趋势。pH以及盐度对B30铜镍合金的腐蚀影响较大。综合试样的腐蚀状况以及膜层测试,B30铜镍合金在盐度为20的海水中表面形成的膜层最为致密。

关键词 B30铜镍合金成膜pH温度盐度    
Abstract

The effect of pH value, temperature and salinity of seawater on the film formation of B30 Cu-Ni alloy were studied by EIS, XPS and CLSM. The results showed that with the increase of pH value within the range of 6.6-9.8, the film quality first became better and then worse; with the increase of the temperature within the range of 2-36 ℃, the quality of the film became worse first and then better; with the increase of salinity within the range of 20-36, the quality of the film became worse first and then better. The pH and salinity had a strong influence on the corrosion of B30 copper nickel alloy. Therefore, considering comprehensively the corrosion morphology of the alloy and the quality of the corresponding film formed on the surface, can produce the most compact and effective passivation film can be produced on the surface of B30 Cu-Ni alloy in the seawater with salinity of 20.

Key wordsB30 copper nickel alloy    film formation    pH    temperature    salinity
收稿日期: 2022-06-19      32134.14.1005.4537.2022.199
ZTFLH:  TG174  
基金资助:国家自然科学基金(U1706221)
通讯作者: 杜敏,E-mail:ssdm99@ouc.edu.cn,研究方向为海洋腐蚀与防护技术
Corresponding author: DU Min, E-mail: ssdm99@ouc.edu.cn
作者简介: 陈翰林,男,1997年生,硕士生

引用本文:

陈翰林, 马力, 黄国胜, 杜敏. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 481-493.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.199      或      https://www.jcscp.org/CN/Y2023/V43/I3/481

图1  B30铜镍合金在不同pH海水中的OCP图
图2  B30铜镍合金在不同pH值海水中的EIS图
图3  B30铜镍合金在海水中电化学阻抗拟合等效电路图
pHt / dRct / Ω·cm2ndRf / Ω·cm2nf
6.6195140.7172.9230.947
5287500.78153.720.776
11520250.85024920.748
15613150.80226130.753
19106300.94715010.804
8.4117740.47673.140.789
5321650.40612040.802
11913730.91113410.737
15910550.89311270.735
19270230.61226680.742
9.81491300.891161.60.869
51070000.980755.60.807
11621100.827125.30.764
15714901.000154.20.760
19470900.997273.10.764
表1  B30铜镍合金在不同pH的海水中浸泡不同时间的EIS的拟合数据
图4  B30铜镍合金在不同pH值海水中浸泡20 d后表面的XPS分析结果
ElementCompoundpH
6.68.49.8
CuCuO, CuCl292.4883.8676.33
Cu2O, CuCl7.5216.1423.67
ClCuCl268.9166.7761.53
CuCl31.0933.2338.47
表2  B30铜镍合金在不同pH海水中浸泡20 d后表面XPS的拟合结果
图5  B30铜镍合金在不同pH海水中浸泡20 d后表面的激光共聚焦显微图像
图6  B30铜镍合金在不同温度海水中的OCP图
图7  B30铜镍合金在不同温度海水中的电化学阻抗图
Temperature / ℃t / dRct / Ω·cm2ndlRf / Ω·cm2nf
21667300.87882.160.705
5887100.87877.570.727
11476300.88426.220.804
151077000.901176.50.732
19980000.879199.30.752
131150300.79927.610.837
5388700.85711.530.867
11423500.8975.6530.897
15441000.84213.110.859
196020.8479.7960.858
25198290.94730.870.822
5117960.8387.3370.849
11112440.7279.4410.738
151436100.82419.420.758
1987830.8156.6880.783
361210400.80619280.798
5200800.81569810.860
11413000.71779970.863
15436200.786118300.852
19261300.680137600.860
表3  B30铜镍合金在不同温度海水中的电化学阻抗拟合数据
图8  B30铜镍合金在不同温度海水中浸泡20 d后表面的XPS图谱
ElementCompoundTemperature / ℃
2132536
CuCuO, CuCl285.2591.1491.4491.96
Cu2O, CuCl14.758.868.568.04
ClCuCl261.4252.8361.5361.30
CuCl38.5847.1738.4738.70
表4  B30铜镍合金在不同温度海水中浸泡20 d后表面成膜物质及其含量
图9  B30铜镍合金在不同温度海水中浸泡20 d后表面的激光共聚焦显微镜图
图10  B30铜镍合金在不同盐度海水中的OCP
图11  B30铜镍合金在不同盐度海水中的EIS图
Salinityt / dRct / Ω·cm2ndRf / Ω·cm2nf
201371800.742355.50.675
582500.650789.30.791
11892390.676151.10.792
15737200.912153700.688
191220000.784143600.718
281210200.82624.90.819
5290640.8099.40.798
11370400.83210.10.844
151313000.81237.00.791
19965900.8171320.754
361155800.7015550.795
5617100.81225700.799
111186000.7771340.732
152035000.54578600.754
193237000.51377700.758
表5  B30铜镍合金在不同盐度的海水中的电化学阻抗拟合数据
图12  B30铜镍合金在不同盐度海水中浸泡20 d后表面的XPS图
ElementCompoundSalinity
202836
CuCuO, CuCl275.8689.1482.64
Cu2O, CuCl24.1410.8617.36
ClCuCl265.0566.3963.94
CuCl34.9433.6136.06
表6  B30铜镍合金在不同盐度海水中浸泡20 d的XPS图拟合结果
图13  B30铜镍合金在不同盐度海水中浸泡20 d后表面的激光共聚焦显微镜图
图14  B30铜镍合金在不同海水中的相位角-45°所对应的频率值
f / kHzpH (No.)Temperature / ℃ (No.)Salinity (No.)
6.6 (1)8.4 (2)9.8 (3)2 (1)13 (2)25 (3)36 (4)20 (1)28 (2)36 (3)
AVG5.94.44.04.21.70.714.312.52.29.0
SD0.61.80.53.20.40.40.40.41.30.1
表7  B30铜镍合金在不同条件的海水中的相位角-45°所对应的频率值
图15  B30铜镍合金在不同海水中的腐蚀电流密度图
Icorr / μA·cm-2pH (No.)Temperature / ℃ (No.)Salinity (No.)
6.6 (1)8.4 (2)9.8 (3)2 (1)13 (2)25 (3)36 (3)20 (1)28 (2)36 (3)
AVG3.590.500.420.290.721.100.470.250.221.92
SD0.150.120.140.070.130.120.130.080.050.15
表8  B30铜镍合金在不同条件的海水中的腐蚀电流密度
1 Bautista B E T, Carvalho M L, Seyeux A, et al. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater [J]. Bioelectrochemistry, 2014, 97: 34
doi: 10.1016/j.bioelechem.2013.10.004 pmid: 24177137
2 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
3 Wang Y Z, Beccaria A M, Poggi G. The effect of temperature on the corrosion behaviour of a 70/30 Cu-Ni commercial alloy in seawater [J]. Corros. Sci., 1994, 36: 1277
doi: 10.1016/0010-938X(94)90181-3
4 Cheng D B, Guo Y, Liu X H, et al. Studies on corrosion and protection of heat exchange tubes of B30 copper-nickel alloy [J]. Dev. Appl. Mater., 2020, 35(1): 84
4 程德彬, 郭 悦, 刘雪辉 等. B30铜镍合金换热管腐蚀与防护研究进展 [J]. 材料开发与应用, 2020, 35(1): 84
5 Li Y X, Ives M B, Coley K S, et al. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid [J]. Corros. Sci., 2004, 46: 1969
doi: 10.1016/j.corsci.2003.10.017
6 Glover T J. Copper-Nickel alloy for the construction of ship and boat hulls [J]. Br. Corros. J., 1982, 17: 155
doi: 10.1179/000705982798274228
7 Alfantazi A M, Ahmed T M, Tromans D. Corrosion behavior of copper alloys in chloride media [J]. Mater. Des., 2009, 30: 2425
doi: 10.1016/j.matdes.2008.10.015
8 Mansfeld F, Liu G, Xiao H, et al. The corrosion behavior of copper alloys, stainless steels and titanium in seawater [J]. Corros. Sci., 1994, 36: 2063
doi: 10.1016/0010-938X(94)90008-6
9 Lin L Y, Liu S F, Zhu X L. Seawater-corrosion-induced intergranular precipitation in Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 1997, 17(1): 1
9 林乐耘, 刘少峰, 朱小龙. 海水腐蚀导致铜镍合金的沿晶析出 [J]. 中国腐蚀与防护学报, 1997, 17(1): 1
10 Ravindranath K, Tanoli N, Gopal H. Failure investigation of brass heat exchanger tube [J]. Eng. Failure Anal., 2012, 26: 332
doi: 10.1016/j.engfailanal.2012.07.018
11 Yan Y M, Lin L Y, Zhu X L. Effect of residual stress on corrosion resistance of copper tube BFe30-1-1 in 3.5%NaCl [J]. J. Chin. Soc. Corros. Prot., 1994, 14(1): 59
11 严宇民, 林乐耘, 朱小龙. 残余应力对BFe30-1-1铜管耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 1994, 14(1): 59
12 Admiraal L, Ijsseling F P, Kolster B H, et al. Influence of temperature on corrosion product film formation on CuNi10Fe in the low temperature range: Part 2: studies on corrosion product film formation and properties in relation to microstructure and iron content [J]. Br. Corros. J., 1986, 21: 33
doi: 10.1179/000705986798272451
13 Hack H P. Role of the corrosion product film in the corrosion protection Cu-Ni alloys in saltwater [D]. Dissertation of Pennsylvania State University, 1987
14 Zhang Z, Yao L A, Gan F X. The effect of surface film on electrochemical behavior of Cu-Ni-Alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
14 张 哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
15 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
15 白苗苗, 白子恒, 蒋 立 等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
doi: 10.11902/1005.4537.2019.012
16 Efird K D. Potential-pH diagrams for 90-10 and 70-30 Cu-Ni in sea water [J]. Corrosion, 1975, 31: 77
doi: 10.5006/0010-9312-31.3.77
17 Syrett B C, Macdonald D D, Wing S S. Corrosion of copper-nickel alloys in sea water polluted with sulfide and sulfide oxidation products [J]. Corrosion, 1979, 35: 409
doi: 10.5006/0010-9312-35.9.409
18 Chi C Y, Xu L K, Lin C G, et al. Influence of pH on electrochemical behavior of 70/30 Cu-Ni alloy [J]. Equip. Environ. Eng., 2009, 6(3): 38
18 迟长云, 许立坤, 蔺存国 等. pH值变化对B30铜镍合金腐蚀电化学行为的影响 [J]. 装备环境工程, 2009, 6(3): 38
19 Chi C Y, Li N, Xue J J, et al. Effect of temperature on electrochemical behavior of B30 Cu-Ni alloy in seawater [J]. Corros. Prot., 2009, 30: 772
19 迟长云, 李 宁, 薛建军 等. 温度对B30铜镍合金在海水中电化学行为的影响 [J]. 腐蚀与防护, 2009, 30: 772
20 Zhu X L, Lin L Y, Xu J, et al. Review of corrosion product films of Cu-Ni alloys in seawater [J]. Mater. Sci. Technol., 1997, 5(2): 21
20 朱小龙, 林乐耘, 徐 杰 等. Cu-Ni合金海水蚀产物膜研究进展 [J]. 材料科学与工艺, 1997, 5(2): 21
21 Ekerenam O O, Ma A L, Zheng Y G, et al. Evolution of the corrosion product film and its effect on the erosion-corrosion behavior of two commercial 90Cu-10Ni tubes in seawater [J]. Acta Metall. Sin. (Engl. Lett), 2018, 31: 1148
doi: 10.1007/s40195-018-0745-1
22 Chi C Y, Li N, Xue J J, et al. Electrochemical behavior of B30 Cu-Ni alloy in seawater [J]. Mater. Prot., 2009, 42(8): 19
22 迟长云, 李 宁, 薛建军 等. B30铜镍合金在海水中的电化学行为 [J]. 材料保护, 2009, 42(8): 19
23 Li H J, Yang X Q, Zhou Z Q. Analysis of factors affecting the corrosion of copper alloys [J]. Electr. Power Environ. Prot., 1995, 11(2): 45
23 李海舰, 杨小琴, 周宗权. 影响铜合金腐蚀的因素分析 [J]. 电力环境保护, 1995, 11(2): 45
24 Xu Q J, Ding M R, Chen Z C, et al. Electrochemical studies of inhibition effects for B30 Cu-Ni alloy corrosion in simulated water [J]. J. Shanghai Univ. Electr. Power, 2006, 22: 229
24 徐群杰, 丁茂荣, 陈子超 等. 模拟水中B30铜镍合金耐蚀性的电化学研究 [J]. 上海电力学院学报, 2006, 22: 229
25 Zhu X L, Lin L Y, Lei T Q. Review on corrosion behaviors of Cu Ni alloys in seawater [J]. Corros. Sci. Prot. Technol., 1997, 9(1): 48
25 朱小龙, 林乐耘, 雷廷权. Cu-Ni合金海水腐蚀行为研究进展 [J]. 腐蚀科学与防护技术, 1997, 9(1): 48
26 Ismail K M, Fathi A M, Badawy W A. Electrochemical behavior of copper-nickel alloys in acidic chloride solutions [J]. Corros. Sci., 2006, 48: 1912
doi: 10.1016/j.corsci.2005.07.004
27 Zhao Y T, Li H H, Chen G Z. EIS characteristics of Cu-based alloy in seawater [J]. Mar. Sci., 2005, 29(7): 21
27 赵永韬, 李海洪, 陈光章. 铜合金在海水中电化学阻抗谱特征研究 [J]. 海洋科学, 2005, 29(7): 21
28 Zhang Z, Yao L A, Gan F X. Electrochemical behavior of Cu-Ni alloy in sodium chloride solution [J]. J. Chin. Soc. Corros. Prot., 1986, 6(2): 103
28 张 哲, 姚禄安, 甘复兴. 铜镍合金B-30在氯化钠介质中的电化学行为 [J]. 中国腐蚀与防护学报, 1986, 6(2): 103
29 Barik R C, Wharton J A, Wood R J K, et al. Galvanic corrosion performance of high-strength copper-nickel alloys in seawater [J]. Corrosion, 2009, 65: 359
doi: 10.5006/1.3319141
30 Metcalfe R G, Pearce-Boltec N. Stress corrosion cracking of a copper elbow fitting [J]. Eng. Failure Anal., 2018, 90: 197
doi: 10.1016/j.engfailanal.2018.03.016
31 Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
doi: 10.1016/j.corsci.2015.05.006
32 Aben T, Tromans D. Anodic polarization behavior of copper in aqueous bromide and bromide/benzotriazole solutions [J]. J. Electrochem. Soc., 1995, 142: 398
doi: 10.1149/1.2044031
33 Ijsseling F P, Kroingman J M, Drolenga L J P. Congress on marine corrosion and fouling [C]. Spain: Barcelons, 1981: 146
34 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
34 王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
35 Zhu X L, Li Z J, Xu J. Research progress on the formation and rupture mechanism of seawater corrosion product film of Cu-Ni alloy [J]. Chin. J. Rare Met., 1997, 21(6): 463
35 朱小龙, 李中建, 徐 杰. Cu-Ni合金海水腐蚀产物膜的形成与破裂机制研究进展 [J]. 稀有金属, 1997, 21(6): 463
36 Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
doi: 10.1016/j.corsci.2006.07.003
37 Féron D. Corrosion Behaviour and Protection of Copper and Aluminium Alloys in Seawater [M]. Boca Raton: Woodhead Publishing Limited, 2007, 64, 119
38 Swartzendruber L J, Bennett L H. The effect of Fe on the corrosion rate of copper rich Cu-Ni alloys [J]. Scr. Metall., 1968, 2: 93
doi: 10.1016/0036-9748(68)90077-X
39 Khan A F, Patil A P. Combined effect of chloride and pH on corrosion resistance of Cu-10Ni alloy [J]. Trans. Indian Inst. Met., 2008, 61: 225
doi: 10.1007/s12666-008-0011-8
40 Sun T T, Li N, Xue J J, et al. Effect of environment factors on corrosion behavior of 90-10 Cu-Ni alloy in seawater [J]. Equip. Environ. Eng., 2010, 7(4): 25
40 孙婷婷, 李 宁, 薛建军 等. 环境因素对B10铜镍合金耐蚀性的影响 [J]. 装备环境工程, 2010, 7(4): 25
[1] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[2] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[3] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[4] 杨新宇, 李祯, 段体岗, 黄国胜, 马力, 刘峰, 姜丹. 70Cu-30Ni合金管FeSO4预成膜及冲刷腐蚀行为分析[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[5] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[6] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[7] 李长春, 何仁碧, 陈以龙, 何仁洋, 王政骁. 交流干扰与阴极保护共同作用对X65管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 179-185.
[8] 刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[9] 陈翰林, 马力, 黄国胜, 杜敏. 溶解氧和流速对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
[10] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[11] 江荣, 张悦, 张磊成, 高希光, 宋迎东. 直接烧结SiC循环氧化行为的试验研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 249-257.
[12] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[13] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[14] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[15] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.