|
|
形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响 |
王智慧1, 吴雷1, 姜懿珊2( ), 张弦1, 万响亮1, 李光强1, 吴开明1,3 |
1.武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081 2.武汉科技大学 绿色制造工程研究院 武汉 430081 3.武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心 武汉 430081 |
|
Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel |
WANG Zhihui1, WU Lei1, JIANG Yishan2( ), ZHANG Xian1, WAN Xiangliang1, LI Guangqiang1, WU Kaiming1,3 |
1.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China 2.Academy of Green Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 3.Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
王智慧, 吴雷, 姜懿珊, 张弦, 万响亮, 李光强, 吴开明. 形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
Zhihui WANG,
Lei WU,
Yishan JIANG,
Xian ZHANG,
Xiangliang WAN,
Guangqiang LI,
Kaiming WU.
Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 429-436.
1 |
Gardner L. The use of stainless steel in structures[J]. Prog. Struct. Eng. Mater., 2005, 7: 45
doi: 10.1002/pse.v7:2
|
2 |
Cheng X Q, Li X G, Du C W. Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature[J]. Acta Metall. Sin., 2006, 42: 299
|
3 |
Zhang Z C. Study on corrosion resistance of 316L austenitic stainless steel by increasing nitrogen element and decreasing nickel element[D]. Baotou: Inner Mongolia University of Science and Technology, 2020
|
3 |
张占川. 增氮降镍316L奥氏体不锈钢抗腐蚀性能研究[D]. 包头: 内蒙古科技大学, 2020
|
4 |
Maki T. Stainless steel: Progress in thermomechanical treatment[J]. Curr. Opin. Solid State Mater. Sci., 1997, 2: 290
doi: 10.1016/S1359-0286(97)80117-9
|
5 |
Milad M, Zreiba N, Elhalouani F, et al. The effect of cold work on structure and properties of AISI 304 stainless steel[J]. J. Mater. Process. Technol., 2008, 203: 80
doi: 10.1016/j.jmatprotec.2007.09.080
|
6 |
Huang J X, Ye X N, Xu Z. Effect of cold rolling on microstructure and mechanical properties of AISI 301LN metastable austenitic stainless steels[J]. J. Iron Steel Res. Int., 2012, 19: 59
|
7 |
Eskandari M, Najafizadeh A, Kermanpur A. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2009, 519(1/2), 46
|
8 |
Ge J, Ren Z Y. Austenitic stainless steel intergranular corrosion cause analysis and countermeasures[J]. Sichuan Chem. Ind., 2015, 18(5): 28
|
8 |
葛 晶, 任中育. 奥氏体不锈钢晶间腐蚀原因分析和对策[J]. 四川化工, 2015, 18(5): 28
|
9 |
Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
|
9 |
伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 288
|
10 |
Kasparova O V, Baldokhin Y V. New concept of the mechanism of intergranular corrosion of stainless steels[J]. Prot. Met., 2007, 43: 235
doi: 10.1134/S0033173207030058
|
11 |
Feng Y P, Zhang X, Wu K M, et al. Influence of heat treatment process on microstructure and corrosion resistance of ultrafine Bainite steel[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 602
|
11 |
冯彦朋, 张 弦, 吴开明 等. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41: 602
doi: 10.11902/1005.4537.2020.220
|
12 |
Hamdy A S, El-Shenawy E, El-Bitar T. The corrosion behavior of niobium bearing cold deformed austenitic stainless steels in 3.5% NaCl solution[J]. Mater. Lett., 2007, 61: 2827
doi: 10.1016/j.matlet.2006.10.043
|
13 |
Poonguzhali A, Pujar M G, Kamachi Mudali U. Effect of nitrogen and sensitization on the microstructure and pitting corrosion behavior of AISI type 316LN stainless steels[J]. J. Mater. Eng. Perform., 2013, 22: 1170
doi: 10.1007/s11665-012-0356-3
|
14 |
Wei B M. Metallic Corrosion Theories and Applications[M]. Beijing: Chemical Industry Press, 1984
|
14 |
魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984
|
15 |
Di Schino A, Kenny J M. Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel[J]. Mater. Lett., 2003, 57: 1830
doi: 10.1016/S0167-577X(02)01076-5
|
16 |
Uggowitzer P J, Harzenmoser M. The strengthening effect of nitrogen on austenitic stainless steel[A]. Translation of High Nitrogen Steel[C]. Shanghai, 1990: 120
|
17 |
Lee T H, Oh C S, Lee C G, et al. Precipitation of σ-phase in high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N stainless steel during isothermal aging[J]. Scr. Mater., 2004, 50: 1325
doi: 10.1016/j.scriptamat.2004.02.013
|
18 |
Li S X, He Y N, Yu S R, et al. Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel[J]. Corros. Sci., 2013, 66: 211
doi: 10.1016/j.corsci.2012.09.022
|
19 |
Barr C M, Thomas S, Hart J L, et al. Tracking the evolution of intergranular corrosion through twin-related domains in grain boundary networks[J]. npj Mater. Degrad., 2018, 2: 14
doi: 10.1038/s41529-018-0032-7
|
20 |
Chen A Y, Hu W F, Wang D, et al. Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure[J]. Scr. Mater., 2017, 130: 264
doi: 10.1016/j.scriptamat.2016.11.032
|
21 |
Wu L, Hu C Y, Ke R, et al. Insights into the plasticization mechanism in different 18Cr-8Ni austenitic stainless steel: study of the phase reverted structure versus cold-deformed structure[J]. Steel Res. Int., 2022, 93: 2200122
doi: 10.1002/srin.v93.11
|
22 |
Li B Q, Sui M L, Mao S X. Twinnability predication for fcc metals[J]. J. Mater. Sci. Technol., 2011, 27: 97
doi: 10.1016/S1005-0302(11)60032-7
|
23 |
Zhang X, Sawaguchi T. Twinning of deformation-induced ε-martensite in Fe-30Mn-6Si shape memory alloy[J]. Acta Mater., 2018, 143: 237
doi: 10.1016/j.actamat.2017.10.009
|
24 |
De Abreu H F G, De Carvalho S S, De Lima Neto P, et al. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance[J]. Mater. Res., 2007, 10: 359
doi: 10.1590/S1516-14392007000400007
|
25 |
Sabooni S, Rashtchi H, Eslami A, et al. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size[J]. Int. J. Mater. Res., 2017, 108: 552
doi: 10.3139/146.111512
|
26 |
Abbasi Aghuy A, Zakeri M, Moayed M H, et al. Effect of grain size on pitting corrosion of 304L austenitic stainless steel[J]. Corros. Sci., 2015, 94: 368
doi: 10.1016/j.corsci.2015.02.024
|
27 |
Kim H P, Kim D J. Intergranular corrosion of stainless steel[J]. Corros. Sci. Technol., 2018, 17: 183
|
28 |
Stawström C, Hillert M. An improved depleted-zone theory of intergranular corrosion of 18-8 stainless steel[J]. J. Phys. Chem., 1969, 207: 77
|
29 |
Beltran R, Maldonado J G, Murr L E, et al. Effects of strain and grain size on carbide precipitation and corrosion sensitization behavior in 304 stainless steel[J]. Acta Mater., 1997, 45: 4351
doi: 10.1016/S1359-6454(97)00106-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|