Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 429-436     CSTR: 32134.14.1005.4537.2023.093      DOI: 10.11902/1005.4537.2023.093
  研究报告 本期目录 | 过刊浏览 |
形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响
王智慧1, 吴雷1, 姜懿珊2(), 张弦1, 万响亮1, 李光强1, 吴开明1,3
1.武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081
2.武汉科技大学 绿色制造工程研究院 武汉 430081
3.武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心 武汉 430081
Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel
WANG Zhihui1, WU Lei1, JIANG Yishan2(), ZHANG Xian1, WAN Xiangliang1, LI Guangqiang1, WU Kaiming1,3
1.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2.Academy of Green Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
3.Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

王智慧, 吴雷, 姜懿珊, 张弦, 万响亮, 李光强, 吴开明. 形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
Zhihui WANG, Lei WU, Yishan JIANG, Xian ZHANG, Xiangliang WAN, Guangqiang LI, Kaiming WU. Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 429-436.

全文: PDF(13322 KB)   HTML
摘要: 

利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)和电化学工作站等对奥氏体不锈钢的微观组织及电化学腐蚀行为进行了分析。结果表明,形变强化和逆相变细晶强化提高了奥氏体不锈钢在3.5%NaCl溶液中的耐点蚀性能,晶粒细化导致晶界密度的增加,提高了Cr在晶界中的扩散速率,从而提高钝化膜的稳定性与致密性。经过敏化处理后形变强化和逆相变细晶强化提高了奥氏体不锈钢的耐晶间腐蚀能力。碳化铬析出物周围形成的贫铬区降低了耐晶间腐蚀性能,而在超细晶/细晶组织中Cr的快速扩散促进了贫铬区的快速愈合,提高了耐晶间腐蚀性能。

关键词 奥氏体不锈钢形变强化细晶强化晶间腐蚀    
Abstract

Cold rolling and reverse phase transformation are the main methods to enhance the yield strength of austenitic stainless steel. Therefore, the effect of deformation strengthening and grain refinement strengthening on the microstructure and corrosion behavior of Fe-18Cr-8Ni austenitic stainless steel was characterized by SEM, TEM, EBSD, electrochemical workstation and other technical characterization means. The results show that the deformation strengthening and the inverse phase transformation induced grain refinement strengthening could enhance the pitting resistance of austenitic stainless steel in 3.5%NaCl solution, grain refinement led to an increase in grain boundary density, which promote the diffusion rate of Cr at grain boundaries, thereby improving the stability and compactness of the passivation film. After sensitization treatment, deformation strengthening and inverse phase transformation induced grain refinement strengthening could enhance the intergranular corrosion resistance of austenitic stainless steel. The appearance of Cr-depletion zone around chromium carbide precipitates will deteriorate the intergranular corrosion resistance of the steel, while the rapid diffusion of Cr in ultrafine grain/fine grain structure will promoted the rapid healing of the passivation film on the Cr-depletion zone, thus the intergranular corrosion resistance of the steel may be improved.

Key wordsaustenitic stainless steel    deformation strengthening    fine grained strengthening    intergranular corrosion
收稿日期: 2023-03-27      32134.14.1005.4537.2023.093
ZTFLH:  TG174  
基金资助:国家自然科学基金(U20A20277);广西科技重大专项(AA22068080)
通讯作者: 姜懿珊,E-mail:jiangyishan@wust.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: JIANG Yishan, E-mail: jiangyishan@wust.edu.cn
作者简介: 王智慧,女,1997年生,博士生
图1  3种钢试样的显微组织形貌
图2  3种钢试样的TEM形貌
图3  3种钢试样的EBSD图和晶粒尺寸分布图
图4  3种钢试样在3.5%NaCl溶液中的动电位极化曲线
Steel sampleEpit / VEcorr / V vs SCEIcorr / A·cm-2
Original0.41-0.381.02 × 10-14
CR0.48-0.982.47 × 10-11
UFG/FG0.75-1.125.09 × 10-10
表1  3种钢试样在3.5%NaCl溶液中的点蚀电位、腐蚀电位和腐蚀电流密度
图5  3种钢试样经敏化处理后的SEM显微组织
图6  3种钢试样在饱和CuSO4溶液中的动电位极化曲线和再活化曲线
Steel sampleAverage grain size / μmEpit / VIr / A·cm-2Ia / A·cm-2Reactivation ratio
Original14.50.410.004480.0098845.34%
CR11.60.480.320290.9531433.60%
UFG/FG2.80.750.000380.985590.39%
表2  3种钢试样晶粒尺寸和耐腐蚀性能
图7  3种钢试样的点蚀电位-晶粒尺寸曲线和再活化率-晶粒尺寸曲线
1 Gardner L. The use of stainless steel in structures[J]. Prog. Struct. Eng. Mater., 2005, 7: 45
doi: 10.1002/pse.v7:2
2 Cheng X Q, Li X G, Du C W. Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature[J]. Acta Metall. Sin., 2006, 42: 299
3 Zhang Z C. Study on corrosion resistance of 316L austenitic stainless steel by increasing nitrogen element and decreasing nickel element[D]. Baotou: Inner Mongolia University of Science and Technology, 2020
3 张占川. 增氮降镍316L奥氏体不锈钢抗腐蚀性能研究[D]. 包头: 内蒙古科技大学, 2020
4 Maki T. Stainless steel: Progress in thermomechanical treatment[J]. Curr. Opin. Solid State Mater. Sci., 1997, 2: 290
doi: 10.1016/S1359-0286(97)80117-9
5 Milad M, Zreiba N, Elhalouani F, et al. The effect of cold work on structure and properties of AISI 304 stainless steel[J]. J. Mater. Process. Technol., 2008, 203: 80
doi: 10.1016/j.jmatprotec.2007.09.080
6 Huang J X, Ye X N, Xu Z. Effect of cold rolling on microstructure and mechanical properties of AISI 301LN metastable austenitic stainless steels[J]. J. Iron Steel Res. Int., 2012, 19: 59
7 Eskandari M, Najafizadeh A, Kermanpur A. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2009, 519(1/2), 46
8 Ge J, Ren Z Y. Austenitic stainless steel intergranular corrosion cause analysis and countermeasures[J]. Sichuan Chem. Ind., 2015, 18(5): 28
8 葛 晶, 任中育. 奥氏体不锈钢晶间腐蚀原因分析和对策[J]. 四川化工, 2015, 18(5): 28
9 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
9 伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 288
10 Kasparova O V, Baldokhin Y V. New concept of the mechanism of intergranular corrosion of stainless steels[J]. Prot. Met., 2007, 43: 235
doi: 10.1134/S0033173207030058
11 Feng Y P, Zhang X, Wu K M, et al. Influence of heat treatment process on microstructure and corrosion resistance of ultrafine Bainite steel[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 602
11 冯彦朋, 张 弦, 吴开明 等. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41: 602
doi: 10.11902/1005.4537.2020.220
12 Hamdy A S, El-Shenawy E, El-Bitar T. The corrosion behavior of niobium bearing cold deformed austenitic stainless steels in 3.5% NaCl solution[J]. Mater. Lett., 2007, 61: 2827
doi: 10.1016/j.matlet.2006.10.043
13 Poonguzhali A, Pujar M G, Kamachi Mudali U. Effect of nitrogen and sensitization on the microstructure and pitting corrosion behavior of AISI type 316LN stainless steels[J]. J. Mater. Eng. Perform., 2013, 22: 1170
doi: 10.1007/s11665-012-0356-3
14 Wei B M. Metallic Corrosion Theories and Applications[M]. Beijing: Chemical Industry Press, 1984
14 魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984
15 Di Schino A, Kenny J M. Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel[J]. Mater. Lett., 2003, 57: 1830
doi: 10.1016/S0167-577X(02)01076-5
16 Uggowitzer P J, Harzenmoser M. The strengthening effect of nitrogen on austenitic stainless steel[A]. Translation of High Nitrogen Steel[C]. Shanghai, 1990: 120
17 Lee T H, Oh C S, Lee C G, et al. Precipitation of σ-phase in high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N stainless steel during isothermal aging[J]. Scr. Mater., 2004, 50: 1325
doi: 10.1016/j.scriptamat.2004.02.013
18 Li S X, He Y N, Yu S R, et al. Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel[J]. Corros. Sci., 2013, 66: 211
doi: 10.1016/j.corsci.2012.09.022
19 Barr C M, Thomas S, Hart J L, et al. Tracking the evolution of intergranular corrosion through twin-related domains in grain boundary networks[J]. npj Mater. Degrad., 2018, 2: 14
doi: 10.1038/s41529-018-0032-7
20 Chen A Y, Hu W F, Wang D, et al. Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure[J]. Scr. Mater., 2017, 130: 264
doi: 10.1016/j.scriptamat.2016.11.032
21 Wu L, Hu C Y, Ke R, et al. Insights into the plasticization mechanism in different 18Cr-8Ni austenitic stainless steel: study of the phase reverted structure versus cold-deformed structure[J]. Steel Res. Int., 2022, 93: 2200122
doi: 10.1002/srin.v93.11
22 Li B Q, Sui M L, Mao S X. Twinnability predication for fcc metals[J]. J. Mater. Sci. Technol., 2011, 27: 97
doi: 10.1016/S1005-0302(11)60032-7
23 Zhang X, Sawaguchi T. Twinning of deformation-induced ε-martensite in Fe-30Mn-6Si shape memory alloy[J]. Acta Mater., 2018, 143: 237
doi: 10.1016/j.actamat.2017.10.009
24 De Abreu H F G, De Carvalho S S, De Lima Neto P, et al. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance[J]. Mater. Res., 2007, 10: 359
doi: 10.1590/S1516-14392007000400007
25 Sabooni S, Rashtchi H, Eslami A, et al. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size[J]. Int. J. Mater. Res., 2017, 108: 552
doi: 10.3139/146.111512
26 Abbasi Aghuy A, Zakeri M, Moayed M H, et al. Effect of grain size on pitting corrosion of 304L austenitic stainless steel[J]. Corros. Sci., 2015, 94: 368
doi: 10.1016/j.corsci.2015.02.024
27 Kim H P, Kim D J. Intergranular corrosion of stainless steel[J]. Corros. Sci. Technol., 2018, 17: 183
28 Stawström C, Hillert M. An improved depleted-zone theory of intergranular corrosion of 18-8 stainless steel[J]. J. Phys. Chem., 1969, 207: 77
29 Beltran R, Maldonado J G, Murr L E, et al. Effects of strain and grain size on carbide precipitation and corrosion sensitization behavior in 304 stainless steel[J]. Acta Mater., 1997, 45: 4351
doi: 10.1016/S1359-6454(97)00106-7
[1] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[2] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[3] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[4] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[5] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[6] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[7] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[8] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[9] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[10] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[11] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[12] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[14] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[15] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.