Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 156-162    DOI: 10.11902/1005.4537.2020.271
  研究报告 本期目录 | 过刊浏览 |
不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究
李建永1, 代殿宇2, 钱程2, 刁书磊1, 刘金山1, 路通鑫1, 孙勇1, 肖凤娟2()
1.石家庄市易达恒联路桥材料有限公司 石家庄 050000
2.石家庄铁道大学材料科学与工程学院河北省交通工程与环境协同发展新材料重点实验室 石家庄 050043
Corrosion Behavior of PANI Nanofiber/Modified GO/Waterborne Epoxy Composite Coating on Stainless Steel
LI Jianyong1, DAI Dianyu2, QIAN Chen2, DIAO Shulei1, LIU Jinshan1, LU Tongxin1, SUN Yong1, XIAO Fengjuan2()
1.Shijiazhuang Yida Henglian Road and Bridge Materials Co. Ltd. , Shijiazhuang 050000, China
2.School of Material Scinece and Engineering of Shijiazhuang Tiedao University, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang 050043, China
全文: PDF(3177 KB)   HTML
摘要: 

在氧化石墨烯纳米片 (GO) 改性的基础上,于非盐酸介质中采用原位共聚法合成了聚苯胺纳米纤维/改性氧化石墨烯复合材料 (PANI-F/CTGO),将其作为防腐增效组分引入到水性环氧聚合物乳液 (WEP) 中构建复合涂料。采用电化学方法和盐雾实验研究了涂料在加速腐蚀条件下对不锈钢的腐蚀防护作用,对腐蚀产物结构进行了分析。复合材料中PANI-F与CTGO的化学键接提高了PANI-F/CTGO在环氧乳液中的分散性和相容性。非盐酸介质条件下制备的PANI纳米纤维没有腐蚀介质盐酸的引入,在涂层中能发挥出更好的耐蚀性;PANI-F/CTGO /WEP涂层具有较高的开路电位 (OCP) 值和阻抗模,耐盐雾时间达到720 h,显示了优异的防腐性能,这主要是PANI-F/CTGO的主动钝化与物理阻隔协同作用的结果。

关键词 非盐酸法原位聚合PANI纳米纤维改性GO纳米片水性环氧复合涂层协同作用    
Abstract

Composite of polyaniline nanofiber/modified graphene oxide (PANI-F/CTGO) was synthesized by in-situ copolymerization in a non-hydrochloric acid medium. PANI-F/CTGO was introduced into waterborne epoxy polymer emulsion (WEP) as an anti-corrosion component to form composite coatings. The anticorrosion effect of the composite coating on stainless steel was assessed by means of salt spray test, electrochemical method, Fourier transform infrared spectroscope, SEM and XRD. Results show that the chemical bonding between PANI-F and CTGO improved the dispersion and compatibility of PANI-F/CTGO in epoxy emulsion. PANI nanofibers prepared in non-hydrochloric acid medium is conducive to better corrosion resistance of the coating due to that there is no corrosive HCl was involved into the prepared coating. PANI-F/CTGO/WEP coatings showed high open circuit potential and impedance modulus in 3.5%NaCl solution after salt spray test for 240 h, indicating their excellent corrosion protection performance. Meanwhile, the mechanism of synergism of active passivation and physical barrier of PANI-F/CTGO was revealed.

Key wordsnon-hydrochloric acid copolymerization    PANI nanofiber    modified GO nanosheet    waterborne epoxy composite coating    adsorption and active passivation
收稿日期: 2020-12-23     
ZTFLH:  TG172  
基金资助:河北省重点研发计划(17273702D);河北省建设科技计划(2016210)
通讯作者: 肖凤娟     E-mail: fengjuanxiao@stdu.edu.cn
Corresponding author: XIAO Fengjuan     E-mail: fengjuanxiao@stdu.edu.cn
作者简介: 李建永,男,1987年生,硕士生,工程师

引用本文:

李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
Jianyong LI, Dianyu DAI, Chen QIAN, Shulei DIAO, Jinshan LIU, Tongxin LU, Yong SUN, Fengjuan XIAO. Corrosion Behavior of PANI Nanofiber/Modified GO/Waterborne Epoxy Composite Coating on Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 156-162.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.271      或      https://www.jcscp.org/CN/Y2022/V42/I1/156

图1  不同涂层SEM形貌及断面形貌
图2  不同涂层XRD谱和FT-IR谱
图3  不同涂层在3.5%NaCl溶液中浸泡20 d后OCP值的变化
图4  不同涂层在3.5%NaCl溶液中的Tafel极化曲线
SampleEcorr vs SCE / VIcorr / μA·cm-2RP / kΩ·cm-2PEF%
EP-0.916.342---
PANI-HCl-0.8762.51152.661.1
CTGO-0.7211.58221.374.9
PANI-0.6011.67376.573.5
0.1%PANI-F/CTGO-0.6510.99483.284.3
0.3%PANI-F/CTGO-0.5490.316556.595.0
0.5%PANI-F/CTGO-0.6881.94189.769.2
表1  不同涂层极化曲线拟合的电化学参数
图5  不同涂层在3.5%NaCl溶液中浸泡48 d后的电化学阻抗
图6  各种涂层盐雾试验720 h后的表面腐蚀状态
图7  涂层下腐蚀产物的XRD图
1 Guo X Y, Tang H L, Li S W, et al. Study on process engineering of waterborn coating on metal surface protection [J]. Mod. Paint Finish., 2013, 16(9): 1
1 郭逍遥, 汤汉良, 李树伟等. 金属表面防护用水性涂料的工艺技术研究[J], 现代涂料与涂装, 2013, 16(9): 1
2 Street R A, Owen S, Duckham S C, et al. Effect of habitat and age on variations in volatile organic compound (VOC) emissions from Quercus ilex and Pinus pinea [J]. Atmosph. Environ., 1997, 31 Suppl 1: 89
3 Huang W, Qiu Z M, Xiao J J, et al. Application status and research progress of waterborne coatings [J]. New Chem. Mater., 2015, 43(8): 210
3 黄伟, 邱祖民, 肖建军等. 水性涂料的应用现状及研究进展 [J]. 化工新型材料, 2015, 43(8): 210
4 Gao L, Wang J. Anticorrosve performance of polyaniline in epoxy coatings [J]. China Coat., 2015, (7): 51-54, 70
4 高磊, 王靖. 聚苯胺在环氧涂层中的防腐性能 [J]. 中国涂料, 2015, (7): 51-54, 70
5 Bagherzadeh M R, Mahdavi F, Ghasemi M, et al. Using nanoemeraldine salt-polyaniline for preparation of a new anticorrosive water-based epoxy coating [J]. Prog. Org. Coat., 2010, 68: 319
6 Wang H H, Guo R Y, Shen Y D, et al. Waterborne polyaniline-graft-alkyd for anticorrosion coating and comparison study with physical blend [J]. Prog. Org. Coat., 2019, 126: 187
7 Liu T, Li J Y, Li X Y, et al. Effect of self-assembled tetraaniline nanofiber on the anticorrosion performance of waterborne epoxy coating [J]. Prog. Org. Coat., 2019, 128: 137
8 Zhao Y Y, Zhang Z M, Yu L M, et al. Electrospinning of polyaniline microfibers for anticorrosion coatings: An avenue of enhancing anticorrosion behaviors [J]. Synth. Met., 2016, 212: 84
9 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457: 706
10 Ghanbari K, Mousavi M F, Shamsipur M, et al. Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery [J]. J. Power Sources, 2007, 170: 513
11 Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32: 425
12 Kuila T, Khanra P, Bose S, et al. Preparation of water-dispersible graphene by facile surface modification of graphite oxide [J]. Nanotechnology, 2011, 22: 305710
13 Xiao F J, Qian C, Guo M, et al. Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite [J]. Prog. Org. Coat., 2018, 125: 79
14 Sadegh P A, Changiz D, Ali k, In situ synthesis of polyaniline-camphorsulfonate particles in an epoxy matrix for corrosion protection of mild steel in NaCl solution [J]. Corros. Sci., 2014, 85: 204
15 Pang B, Zhang Y S, Liu G H, et al. Interface properties of nanosilica-modified waterborne epoxy cement repairing system [J]. ACS Appl. Mater. Interfaces, 2018, 10: 21696
16 Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32: 425
17 Hosseini M, Mertens S F L, Arshadi M R. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenete- tramine [J]. Corros. Sci., 2003, 45: 1473
18 Huang Y, Tang J C, Gai L S, et al. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal [J]. Chem. Eng. J., 2017, 319: 229
19 Sathiyanarayanan S, Karpakam V, Kamaraj K, et al. Sulphonate doped polyaniline containing coatings for corrosion protection of iron [J]. Surf. Coat. Technol., 2010, 204: 1426
20 Farahati R, Mousavi-Khoshdel S M, Ghaffarinejad A, et al. Experimental and computational study of penicillamine drug and cysteine as water-soluble green corrosion inhibitors of mild steel [J]. Prog. Org. Coat., 2020, 142: 105567
[1] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[2] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[3] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[4] 杨颖, 林翠, 赵晓斌, 张翼飞. TA2在LiBr溶液中的初期空化腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[5] 张漫路,赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 1-10.
[6] 杜楠,舒伟发,王春霞,王帅星,陈庆龙. 一种组合添加剂在碱性无氰镀锌中的作用[J]. 中国腐蚀与防护学报, 2012, 32(3): 251-255.
[7] 李松梅 王彦卿 刘建华 梁 馨. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186.
[8] 舒勇华; 王福会; 吴维tao . NaCl盐膜和水蒸气对纯Cr腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2000, 20(2): 88-96 .
[9] 张大全; 徐群杰; 陆柱 . 苯并三唑和咪唑分子内缓蚀协同作用的研究[J]. 中国腐蚀与防护学报, 1999, 19(5): 280-284 .
[10] 蔡健平;郑逸苹;刘寿荣. 氯化物、硫污染物对碳钢大气腐蚀的协同作用[J]. 中国腐蚀与防护学报, 1996, 16(4): 303-306.