Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1043-1050          DOI: 10.11902/1005.4537.2021.272
  研究报告 本期目录 | 过刊浏览 |
CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响
王小红(), 李子硕, 唐御峰, 谭浩, 蒋焰罡
西南石油大学新能源与材料学院 成都 610500
Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-
WANG Xiaohong(), LI Zishuo, TANG Yufeng, TAN Hao, JIANG Yangang
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
引用本文:

王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
Xiaohong WANG, Zishuo LI, Yufeng TANG, Hao TAN, Yangang JIANG. Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1043-1050.

全文: PDF(12942 KB)   HTML
摘要: 

采用带有电磁驱动轴的高温高压釜,通过失重法评价了L80、L80Cr13、22Cr、25Cr钢在含CO2、H2S、Cl-的地层水中的腐蚀速率,采用SEM、EDS及XRD对其表面腐蚀产物膜进行了分析,利用AFM分析腐蚀后材料表面的粗糙度,使用CLSM分析腐蚀后材料表面的点蚀情况。结果表明,在CO2分压为0.12 MPa、H2S分压为0.003 MPa,Cl-浓度为150.8 g/L,温度为80 ℃的地层水中,试样转速为100 r/min的条件下,4种钢材均匀腐蚀速率由大到小排序为L80Cr13>L80>22Cr>25Cr。L80Cr13钢表面的腐蚀产物膜主要是由Cr2O3与Cr(OH)3组成,该腐蚀产物膜在Cl-的作用下局部地方破损;L80Cr13钢发生了明显的点蚀,最大点蚀深度为11.037 μm。L80钢表面的腐蚀产物膜主要是由FeS以及疏松的FeCO3组成,该产物膜对L80钢具有一定的保护作用,但L80钢仍旧有轻微的点蚀,最大点蚀深度为1.855 μm。22Cr、25Cr钢表面仅有一层钝化膜,且该钝化膜对基体具有良好的保护作用,基体几乎没有发生点蚀。

关键词 铬含量不锈钢CO2-H2S-Cl-腐蚀产物膜    
Abstract

The corrosion rate of L80, L80Cr13, 22Cr and 25Cr in CO2-H2S-Cl--containing artificial stratum waters in a high temperature and high pressure autoclave equipped with electromagnetic drive shaft was evaluated by means of mass loss method. The surface morphology and element distributions of corrosion product films were analyzed by SEM, EDS and XRD. The roughness and the pitting morphology of the material surface after corrosion was characterized by means of AFM and CLSM respectively. The results suggested that the corrosion rates of L80Cr13, L80, 22Cr and 25Cr decreased sequentially in the artificial stratum water with 0.12 MPa CO2 0.003 MPa H2S, 150.8 g/L Cl- at 80 ℃ for samples with rotating speed of 100 r/min. The corrosion product film on the surface of L80Cr13 was mainly composed of Cr2O3 and Cr(OH)3, which was locally damaged under the action of Cl-, thereby, severe pitting corrosion emerged; the corrosion product film on the surface of L80 was mainly composed of FeS and FeCO3, which has certain protective effect for the steel,thus the steel suffered from slight pitting corrosion. There is a passivation film formed only on the surface of steels 22Cr and 25Cr, while little pitting was detected.

Key wordschromium content    stainless steel    CO2-H2S-Cl-    corrosion product scale
收稿日期: 2021-10-09     
ZTFLH:  TG174  
基金资助:四川省科技厅应用基础项目(2021YJ0346);西南石油大学重点开放实验项目(2020KSZ05011)
作者简介: 李子硕,男,1995年生,硕士生
SteelCSiMnPSCrBAlFe
L800.210.161.310.00930.00270.150.00230.030Bal.
L80Cr130.200.240.490.0160.001712.90.00230.033Bal.
22Cr0.0180.421.320.0220.001322.40.00210.010Bal.
25Cr0.00940.350.790.0240.001925.10.00440.018Bal.
表1  4种钢材的化学成分
图1  4种钢材除膜后的AFM形貌及表面粗糙度
图2  L80和L80Cr13钢在模拟地层水溶液中浸泡14 d后的表面SEM形貌
图3  L80和L80Cr13钢在模拟地层水中浸泡14 d后的CLSM形貌及其点蚀密度和平均深度
图4  4种钢材在模拟地层水中浸泡14 d后的表面宏观形貌
图5  L80Cr13钢表面腐蚀产物膜破损
图6  L80钢在模拟地层水中浸泡14 d后的侧面形貌、元素线扫描、正面微观形貌及XRD谱
图7  L80试样能谱分析点的位置分布
图8  L80Cr13钢在模拟地层水中浸泡14 d后的侧面形貌、EDS线扫描分析结果及正面微观形貌
图9  L80Cr13钢表面EDS分析点的位置分布
图10  L80Cr13钢在模拟地层水中浸泡14 d后的XRD谱
[1] Ai Z J, Fan Y W, Zhao Q K. Review on H2S corrosion of oil gas tubing and its protection [J]. Surf. Technol., 2015, 44(9): 108
[1] (艾志久, 范钰伟, 赵乾坤. H2S对油气管材的腐蚀及防护研究综述 [J]. 表面技术, 2015, 44(9): 108)
[2] Zhu S D, Liu H, Bai Z Q, et al. Dynamic corrosion behavior of P110 steel in stimulated oil field CO2/H2S environment [J]. Chem. Eng. Oil Gas, 2009, 38: 65
[2] (朱世东, 刘会, 白真权 等. 模拟油田CO2/H2S环境中P110钢的动态腐蚀行为 [J]. 石油与天然气化工, 2009, 38: 65)
[3] Zhao G X, Huang J, Xue Y. Corrosion behavior of materials used for surface gathering and transportation pipeline in an oilfield [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 557
[3] (赵国仙, 黄静, 薛艳. 某油田地面集输管道用材腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 557)
[4] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-A compendium [J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
[5] Xie T, Zhang X C, Lin H, et al. Corrosion behavior of casing steel with different materials in CO2 and H2S environment [J]. Equip. Environ. Eng., 2021, 18(1): 57
[5] (谢涛, 张晓诚, 林海 等. CO2和微量H2S共存环境中套管防腐优选研究 [J]. 装备环境工程, 2021, 18(1): 57)
[6] Dunlop A K, Hassell H L, Rhodes P R. Fundamental consideration in sweet gas well corrosion [A]. NACE International Corrosion 1983 Conference [C]. Anaheim: 1983
[7] Asami K, Hashimoto K, Shimodaira S. An XPS study of the passivity of a series of iron—chromium alloys in sulphuric acid [J]. Corros. Sci., 1978, 18: 151
doi: 10.1016/S0010-938X(78)80085-7
[8] Tian Y Q, Fu A Q, Hu J G, et al. Corrosion behavior of low Cr steel in CO2/H2S environment [J]. Surf. Technol., 2019, 48(5): 49
[8] (田永强, 付安庆, 胡建国 等. 低Cr钢在CO2/H2S环境中的腐蚀行为研究 [J]. 表面技术, 2019, 48(5): 49)
[9] Zhao Z M. Oil and Gas Well Corrosion Protection and Material Selection Guide [M]. Beijing: Petroleum Industry Press, 2011
[9] (赵章明. 油气井腐蚀防护与材质选择指南 [M]. 北京: 石油工业出版社, 2011)
[10] Wang F, Wei C Y, Huang T J, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel in annulus environment around CO2 injection well [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 46
[10] (王峰, 韦春艳, 黄天杰 等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 46)
[11] Lu Y, Zhao J M, Zhang Y, et al. Factors controlling H2S/CO2 corrosion of X65 carbon steel [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 2021, 48(3): 17
[11] (陆原, 赵景茂, 张勇 等. X65碳钢的H2S/CO2腐蚀控制因素研究 [J]. 北京化工大学学报 (自然科学版), 2021, 48(3): 17)
[12] Li Q, Zhang D P, Wang W, et al. Evaluation of actual corrosion status of L80 tubing steel and subsequent electrochemical and SCC investigation in lab [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 317
[12] (李清, 张德平, 王薇 等. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 317)
[13] Srinivasan S, Tebbal S. Critical factors in predicting CO2/H2S corrosion in multiphase systems [A]. Corrosion 98 [C]. San Diego, California, 1998
[14] Guo S Q, Xu L N, Zhang L, et al. Corrosion of alloy steels containing 2% chromium in CO2 environments [J]. Corros. Sci., 2012, 63: 246
doi: 10.1016/j.corsci.2012.06.006
[15] Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
doi: 10.1016/S0013-4686(02)00841-1
[16] Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment [J]. Mater. Lett., 2005, 59: 3370
doi: 10.1016/j.matlet.2005.06.002
[17] Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems [J]. Corros. Sci., 2016, 111: 637
doi: 10.1016/j.corsci.2016.06.003
[18] Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test [J]. Corros. Sci., 2018, 145: 307
doi: 10.1016/j.corsci.2018.10.011
[19] Lee J B, Kim S W. Semiconducting properties of passive films formed on Fe-Cr alloys using capacitiance measurements and cyclic voltammetry techniques [J]. Mater. Chem. Phys., 2007, 104: 98
doi: 10.1016/j.matchemphys.2007.02.089
[20] Moreira R M, Franco C V, Joia C J B M, et al. The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid [J]. Corros. Sci., 2004, 46: 2987
doi: 10.1016/j.corsci.2004.05.020
[21] Zhao Y, Xie J F, Zeng G X, et al. Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity [J]. Electrochim. Acta, 2019, 293: 116
doi: 10.1016/j.electacta.2018.08.156
[22] Han P, Chen C F, Yu H B, et al. Study of pitting corrosion of L245 steel in H2S environments induced by imidazoline quaternary ammonium salts [J]. Corros. Sci., 2016, 112: 128
doi: 10.1016/j.corsci.2016.07.006
[23] Liu W, Dou J J, Lu S L, et al. Effect of silty sand in formation water on CO2 corrosion behavior of carbon steel [J]. Appl. Surf. Sci., 2016, 367: 438
doi: 10.1016/j.apsusc.2016.01.228
[24] Zhang W H. Stainless Steel and its Heat Treatment [M]. Shenyang: Liaoning Science and Technology Press, 2010
[24] (张文华. 不锈钢及其热处理 [M]. 沈阳: 辽宁科学技术出版社, 2010)
[25] Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Construct. Build. Mater., 2020, 238: 117763
doi: 10.1016/j.conbuildmat.2019.117763
[26] Bhatt R B, Kamat H S, Ghosal S K, et al. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds [J]. J. Mater. Eng. Perform., 1999, 8: 591
doi: 10.1007/s11665-999-0014-6
[27] Marcelin S, Pébère N, Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution [J]. Electrochim. Acta, 2013, 87: 32
doi: 10.1016/j.electacta.2012.09.011
[1] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[3] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[5] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[6] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[8] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[9] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[10] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[11] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[12] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[13] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[14] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[15] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.