Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 789-796     CSTR: 32134.14.1005.4537.2023.181      DOI: 10.11902/1005.4537.2023.181
  研究报告 本期目录 | 过刊浏览 |
改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究
冯兴国1, 顾卓然1, 范琦琦1, 卢向雨1(), 杨雅师2
1.河海大学港口海岸与近海工程学院 南京 210024
2.皖江工学院水利工程学院 马鞍山 243000
Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes
FENG Xingguo1, GU Zhuoran1, FAN Qiqi1, LU Xiangyu1(), YANG Yashi2
1. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China
2. School of Hydraulic Engineering, Wanjiang University of Technology, Maanshan 243000, China
引用本文:

冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
Xingguo FENG, Zhuoran GU, Qiqi FAN, Xiangyu LU, Yashi YANG. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 789-796.

全文: PDF(5121 KB)   HTML
摘要: 

对比了直接掺入粉煤灰、水泥浆或水泥-偏高岭土复合浆增强处理珊瑚粗骨料等改性方案对珊瑚混凝土中2205不锈钢钢筋腐蚀速率的影响。结果表明,珊瑚混凝土中2205不锈钢钢筋长期处于钝化状态;掺入粉煤灰可降低2205不锈钢钢筋腐蚀速率,但直接掺入的粉煤灰会引起珊瑚混凝土强度明显下降。采用P.O 52.5水泥浆或P.O 52.5水泥 + 偏高岭土复合浆增强珊瑚粗骨料,再用增强粗骨料制备的珊瑚混凝土强度与对照组试样强度差异较小,但骨料增强的珊瑚混凝土中2205不锈钢钢筋腐蚀速率明显降低,采用P.O 52.5水泥 + 偏高岭土复合浆增强粗骨料的试样中2205不锈钢钢筋腐蚀速率最低。综合考虑,P.O 52.5水泥 + 偏高岭土复合浆增强珊瑚粗骨料,其制备的珊瑚混凝土具有较高强度,2205不锈钢钢筋的腐蚀速率最低,这种复合浆增强珊瑚粗骨料方案是提高不锈钢钢筋珊瑚混凝土结构耐久性的有效途径。

关键词 珊瑚混凝土不锈钢钢筋粉煤灰粗骨料增强腐蚀速率    
Abstract

The effect of different modification schemes for strengthening the coral coarse aggregate, namely direct incorporation of fly ash, cement slurry or cement-metakaolin composite slurry, on the corrosion rate of 2205 stainless steel bars in the coral concretes was comparatively assessed so that to search insight the way to improve the durability of stainless steel reinforced coral concrete structure. The results show that the 2205 stainless steel bar always maintained a passivation state in the coral concrete. The incorporation of fly ash can reduce the corrosion rate of 2205 stainless steel bar, but the direct addition of fly ash may significantly decrease the strength of coral concrete. With P.O 52.5 cement slurry or P.O 52.5 cement-metakaolin composite slurry as modifier can strengthen coral coarse aggregate, but the strength of coral concrete prepared with the modified crude aggregate has little difference with that of the control group, while the corrosion rate of 2205 stainless steel bar in the coral concrete strengthened with the coarse aggregate is significantly reduced. Among others, the corrosion rate of 2205 stainless steel bar is the lowest in the concrete of coarse aggregate reinforced with P.O 52.5 cement-metakaolin composite slurry In conclusion, using P.O 52.5 cement-metakaolin composite slurry to enhance coral coarse aggregate can effectively improve the durability of stainless steel reinforced coral concrete structures by providing high strength and greatly reducing the corrosion rate of 2205 stainless steel bar.

Key wordscoral concrete    stainless steel bar    fly ash    strengthened coarse aggregate    corrosion rate
收稿日期: 2023-05-30      32134.14.1005.4537.2023.181
ZTFLH:  TU511  
基金资助:国家重点研发计划(2022YFB3207400);中央高校科研业务费专项(TKS20220601)
通讯作者: 卢向雨,E-mail:luxiangyu@hhu.edu.cn,研究方向为钢筋混凝土腐蚀与防护
Corresponding author: LU Xiangyu, E-mail: luxiangyu@hhu.edu.cn
作者简介: 冯兴国,男,1983年生,博士,副教授
图1  预埋了不锈钢钢筋的珊瑚混凝土试样
图2  改性珊瑚混凝土的抗压强度
图3  2205不锈钢试样开路电位
图4  2205不锈钢钢筋Rp值
图5  2205不锈钢钢筋Icorr值及对比
图6  掺入FA的珊瑚混凝土中2205不锈钢钢筋Nyquist图
图7  粗骨料包浆改性的珊瑚混凝土中2205不锈钢钢筋Nyquist图
图8  拟合电化学阻抗的等效电路
图9  珊瑚混凝土保护层电阻Rcon
图10  钢筋/混凝土界面电阻Rct
图11  根据电化学阻抗拟合结果计算的钢筋腐蚀电流密度Icorr-EIS以及数值对比
1 Zhao Y L, Han C, Zhang S Z, et al. Experimental study on the compression age strenth of seawater coral concrete [J]. Concrete, 2011, (2): 43
1 赵艳林, 韩 超, 张栓柱 等. 海水拌养珊瑚混凝土抗压龄期强度试验研究 [J]. 混凝土, 2011, (2): 43
2 Chen S J. Natural overview of the Nansha Islands [J]. Mar. Sci. Bull., 1982, (1): 52
2 陈史坚. 南沙群岛的自然概况 [J]. 海洋通报, 1982, (1): 52
3 Wattanachai P, Otsuki N, Saito T, et al. A study on chloride ion diffusivity of porous aggregate concretes and improvement method [J]. Doboku Gakkai Ronbunshuu, 2009, 65E: 30
4 Howdyshell P A. The use of coral as an aggregate for Portland cement concrete structures [R]. Army Construction Engineering Research Laboratory, 1974
5 Feng X G, Shi R L, Xu Y W, et al. Study on corrosion resistance of stainless steel reinforcement in coral concrete [A]. China Ocean Engineering Society. Proceedings of the 18th China Ocean Coastal Engineering Symposium [C]. Beijing, 2017: 736
5 冯兴国, 石锐龙, 徐逸文 等. 不锈钢钢筋在珊瑚混凝土中的耐蚀性研究 [A]. 中国海洋工程学会. 第十八届中国海洋(岸)工程学术讨论会论文集(上) [C]. 北京, 2017: 736
6 Feng X G, Zhang L Y, Zhang J, et al. Effect of aluminum tri-polyphosphate on corrosion behavior of reinforcing steel in seawater prepared coral concrete [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2019, 34: 906
doi: 10.1007/s11595-019-2136-5
7 Liu J, Chen X D, Yu A P, et al. Multi-phase mesoscopic numerical simulation of chloride iondiffusion in recycled aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1111
7 刘 晶, 陈宣东, 虞爱平 等. 再生混凝土氯离子扩散多相细观数值模拟 [J]. 中国腐蚀与防护学报, 2023, 43: 1111
8 Yuan C F, Niu D T. Research on the durability of fly ash concrete in marine atmospheric environment[J]. Bull. Chin. Ceramic Soc., 2012, 31: 1
8 元成方, 牛荻涛. 海洋大气环境下粉煤灰混凝土耐久性研究 [J]. 硅酸盐通报, 2012, 31: 1
9 Yodsudjai W, Otsuki N, Nishida T, et al. Study on strength and durability of concrete using low quality coarse aggregate from circum-pacific region [A]. Proceedings of the Fourth Regional Symposium on Infrastructure Development in Civil Engineering [C]. Bangkok, 2003: 171
10 Feng X G, Lu X, Lu X Y, et al. Corrosion rate of stainless steel rebar in coral concrete prepared with seawater [J]. J. Build. Mater., 2021, 24: 1322
10 冯兴国, 卢 潇, 卢向雨 等. 海水拌制珊瑚混凝土中不锈钢钢筋的锈蚀速率 [J]. 建筑材料学报, 2021, 24: 1322
11 Otieno M, Beushausen H, Alexander M. Prediction of corrosion rate in reinforced concrete structures- critical review and preliminary results [J]. Mater. Corros., 2012, 63: 777
12 Broomfield J P, Rodriguez J, Ortega L M, et al. Corrosion rate measurements in reinforced concrete structures by a linear polarization device [A]. Proceedings of International Symposium on Condition Assessment, Protection, Repair, and Rehabilitation of Concrete Bridges Exposed to Aggressive Environments [C]. Minneapolis, 1993
13 Castro-Borges P, De Rincón O T, Moreno E I, et al. Performance of a 60-year-old concrete pier with stainless steel reinforcement [J]. Mater. Perform., 2002, 41: 50
14 Mistry M, Koffler C, Wong S. LCA and LCC of the world’s longest pier: a case study on nickel-containing stainless steel rebar [J]. Int. J. Life Cycle Assess, 2016, 21: 1637
doi: 10.1007/s11367-016-1080-2
15 Feng X G, Yan Q X, Lu X Y, et al. Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments [J]. Corros. Sci., 2020, 174: 108818
doi: 10.1016/j.corsci.2020.108818
16 Bao Y F, Wu Z Y, Chen Z, et al. Effect of sensitization treatment on electrochemical corrosion and pitting corrosion of 00Cr21NiMn5Mo2N stainless steel [J]. J. Chin. Soc. Corros. Protect., 2022, 42: 1027
16 包晔峰, 武竹雨, 陈 哲 等. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1027
doi: 10.11902/1005.4537.2021.289
17 González J A, Molina A, Escudero M L, et al. Errors in the electrochemical evaluation of very small corrosion rates—I. Polarization resistance method applied to corrosion of steel in concrete [J]. Corros. Sci., 1985, 25: 917
doi: 10.1016/0010-938X(85)90021-6
18 Poursaee A. Corrosion measurement techniques in steel reinforced concrete [J]. J. ASTM Int., 2011, 8: JAI103283
[1] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[2] 彭立园, 吴欣强, 张兹瑜, 谭季波. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[3] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[4] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[5] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[6] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[7] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[8] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[9] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[10] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[11] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[12] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[13] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[14] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[15] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.