Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 807-814     CSTR: 32134.14.1005.4537.2023.233      DOI: 10.11902/1005.4537.2023.233
  研究报告 本期目录 | 过刊浏览 |
生物质碳点对Q235钢的缓蚀性能研究
龙武剑1,2, 唐杰1, 罗启灵1,2, 丘章鸿3, 王海龙3()
1.深圳大学土木与交通工程学院 深圳 518060
2.广东省滨海土木工程耐久性重点实验室 深圳 518060
3.广东裕恒工程检测技术有限责任公司 广州 511356
Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel
LONG Wujian1,2, TANG Jie1, LUO Qiling1,2, QIU Zhanghong3, WANG Hailong3()
1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
2. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, China
3. Guangdong Yuheng Engineering Testing Technology Co., Ltd., Guangzhou 511356, China
引用本文:

龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
Wujian LONG, Jie TANG, Qiling LUO, Zhanghong QIU, Hailong WANG. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 807-814.

全文: PDF(6434 KB)   HTML
摘要: 

金属腐蚀威胁金属设施的安全性和可靠性,也加剧了环境污染和经济损失问题。然而,使用可持续、可再生且经济的原材料制备绿色缓蚀剂现阶段仍是有挑战性难题。本文以荔枝叶为原料制备了生物质基碳点(CDs),并采用失重法、电化学阻抗谱和动电位极化曲线系统研究了其在1 mol/L HCl中对Q235钢的缓蚀性能。所获得的生物质基CDs具有丰富的含氧和含氮官能团,这些官能团使CDs在1 mol/L HCl溶液中保持稳定,具有长期有效的缓蚀性能。

关键词 碳点缓蚀剂吸附电化学实验    
Abstract

The corrosion of metallic materials poses a threat to the safety and reliability of metallic facility and equipment, as well as exacerbating environmental pollution and economic losses. However, the use of sustainable, renewable and economical raw materials to prepare green corrosion inhibitors is still a challenging issue at this stage. Herein, biomass-based carbon dots (CDs) were prepared with lychee leaves as raw material, and their corrosion inhibition performance on Q235 steel in 1 mol/L HCl was assessed by means of mass loss measurement, electrochemical impedance spectroscope, and potentiodynamic polarization measurement. Results indicate that the obtained biomass-derived CDs contain numerous oxygen and nitrogen functional groups, which enable them to remain stable in 1 mol/L HCl solution and exhibit long-term stable corrosion inhibition performance.

Key wordscarbon dots    corrosion inhibitor    absorption    electrochemical measurements
收稿日期: 2023-07-27      32134.14.1005.4537.2023.233
ZTFLH:  TG142.71  
基金资助:国家自然科学基金-山东联合基金(U2006223);广东省重点领域研发计划(2019B111107003);广东省基础与应用基础研究基金(2023A1515012136)
通讯作者: 王海龙,E-mail:168680212@qq.com,研究方向为腐蚀与防护技术
Corresponding author: WANG Hailong, E-mail: 168680212@qq.com
作者简介: 龙武剑,男,1977年生,博士,教授
图1  CDs的TEM图
图2  CDs的FTIR谱
图3  1 mg/mL的CDs水溶液UV-Vis光谱以及用不同激发波长测试得到的PL光谱
图4  Q235钢在含不同浓度CDs的1 mol/L HCl溶液中浸泡不同时间的腐蚀速率和缓蚀率随时间的变化曲线
图5  Q235钢在含不同浓度CDs的1 mol/L HCl中进行电化学测试结果

C

mg·L-1

Rs

Ω·cm2

Rp

Ω·cm2

CPEdl

μF·cm-2

χγ
Blank1.6515.83193.8500.04042-
251.51339.6976.8920.0615959.41%
501.79694.8171.1870.0485783.30%
1001.912161.3741.8350.063490.19%
2005.451353.2237.1270.0069795.51%
表1  Q235钢浸泡在不同溶液中的等效电路拟合参数
图6  Q235钢在含不同浓度CDs的1 mol/L HCl中的PDP曲线

C

mg·L-1

Ecorr

mV/SCE

Icorr

μA·cm-2

-βc

mV·dec-1

βa

mV·dec-1

IE
Blank-468891.10168179-
25-479254.2114715271.47%
50-491154.2112413082.69%
100-49431.2810612996.49%
200-49620.4710411197.70%
表2  PDP测试所得电化学参数
图7  依据电化学测试数据计算所得的Langmuir吸附曲线
图8  Q235钢的SEM和EDS图像
图9  浸泡96 h前后Q235钢表面及CDs材料的FTIR谱
1 Yang D P, Ye Y W, Su Y, et al. Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel [J]. J. Clean Prod., 2019, 229: 180
doi: 10.1016/j.jclepro.2019.05.030
2 Zhang Q H, Hou B S, Li Y Y, et al. Two amino acid derivatives as high efficient green inhibitors for the corrosion of carbon steel in CO2-saturated formation water [J]. Corros. Sci., 2021, 189: 109596
doi: 10.1016/j.corsci.2021.109596
3 Li X, Wang X Y, Nawaz H, et al. The choice of ionic liquid ions to mitigate corrosion impacts: the influence of superbase cations and electron-donating carboxylate anions [J]. Green Chem., 2022, 24: 2114
doi: 10.1039/D1GC04173H
4 Baran E, Cakir A, Yazici B. Inhibitory effect of Gentiana olivieri extracts on the corrosion of mild steel in 0.5 M HCl: Electrochemical and phytochemical evaluation [J]. Arab. J. Chem., 2019, 12(8): 4303
doi: 10.1016/j.arabjc.2016.06.008
5 He C, Xu P, Zhang X H, et al. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective [J]. Carbon, 2022, 186: 91
doi: 10.1016/j.carbon.2021.10.002
6 Long W J, Li X Q, Xu P, et al. Facile and scalable preparation of carbon dots with Schiff base structures toward an efficient corrosion inhibitor [J]. Diam. Relat. Mater., 2022, 130: 109401
doi: 10.1016/j.diamond.2022.109401
7 Zhu M Y, Guo L, He Z Y, et al. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study [J]. J. Colloid Interface Sci., 2022, 608: 2039
doi: 10.1016/j.jcis.2021.10.160
8 Cui M J, Ren S M, Zhao H C, et al. Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1 M HCl solution [J]. Appl. Surf. Sci., 2018, 443: 145
doi: 10.1016/j.apsusc.2018.02.255
9 Guo L, Zhu M Y, He Z Y, et al. One-pot hydrothermal synthesized nitrogen and sulfur codoped carbon dots for acid corrosion inhibition of Q235 steel [J]. Langmuir, 2022, 38(13): 3984
doi: 10.1021/acs.langmuir.1c03289
10 Xu Q J, Ge K, Zhang S T, et al. Understanding the adsorption and inhibitive properties of Nitrogen-Doped Carbon Dots for copper in 0.5 M H2SO4 solution [J]. J. Taiwan Inst. Chem. Engineers, 2021, 125: 23
doi: 10.1016/j.jtice.2021.05.050
11 Zhang Y, Tan B C, Zhang X, et al. Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution [J]. J. Mol. Liq., 2021, 338: 116702
doi: 10.1016/j.molliq.2021.116702
12 Zhang Y, Zhang S T, Tan B C, et al. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution [J]. J. Colloid Interface Sci., 2021, 604: 1
doi: 10.1016/j.jcis.2021.07.034
13 Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
doi: 10.1016/j.corsci.2019.108193
14 Cen H Y, Chen Z Y, Guo X P. Corrosion inhibition performance and mechanism of carbon dots as corrosion inhibitors [J]. Surf. Tech., 2020, 49(11): 13
14 岑宏宇, 陈振宇, 郭兴蓬. 碳量子点缓蚀剂的缓蚀行为与机理研究 [J]. 表面技术, 2020, 49(11): 13
15 Cen H Y, Zhang X, Zhao L, et al. Carbon dots as effective corrosion inhibitor for 5052 aluminium alloy in 0.1 M HCl solution [J]. Corros. Sci., 2019, 161: 108197
doi: 10.1016/j.corsci.2019.108197
16 Ye Y W, Jiang Z L, Zou Y J, et al. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 43: 144
doi: 10.1016/j.jmst.2020.01.025
17 Zhu L L, Shen D K, Wu C F, et al. State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots [J]. Ind. Eng. Chem. Res., 2020, 59: 22017
doi: 10.1021/acs.iecr.0c04760
18 Chen W F, Li D J, Tian L, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging [J]. Green Chem., 2018, 20: 4438
doi: 10.1039/C8GC02106F
19 Fang M Y, Wang B Y, Qu X L, et al. State-of-the-art of biomass-derived carbon dots: Preparation, properties, and applications [J]. Chin. Chem. Lett., 2024, 35: 108423
doi: 10.1016/j.cclet.2023.108423
20 Ding H, Wei J S, Zhang P, et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths [J]. Small, 2018, 14: 1800612
doi: 10.1002/smll.v14.22
21 Li W D, Liu Y, Wang B Y, et al. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging [J]. Chin. Chem. Lett., 2019, 30: 2323
doi: 10.1016/j.cclet.2019.06.040
22 Wang L, Wang Y L, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties [J]. Nat. Commun., 2014, 5: 5357
doi: 10.1038/ncomms6357 pmid: 25348348
23 Xu Y L, Wang B Y, Zhang M M, et al. Carbon dots as a potential therapeutic agent for the treatment of cancer-related anemia [J]. Adv. Mater., 2022, 34: 2200905
doi: 10.1002/adma.v34.19
24 Wang B Y, Song H Q, Tang Z Y, et al. Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation [J]. Nano Res., 2022, 15: 942
doi: 10.1007/s12274-021-3579-5
25 Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J]. ACS Nano, 2016, 10: 484
doi: 10.1021/acsnano.5b05406 pmid: 26646584
26 Chen B B, Chang S, Jiang L, et al. Reversible polymerization of carbon dots based on dynamic covalent imine bond [J]. J. Colloid Interface Sci., 2022, 621: 464
doi: 10.1016/j.jcis.2022.04.089
27 Su Y, Qiu S H, Yang D P, et al. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH [J]. J. Hazard. Mater., 2020, 391: 122215
doi: 10.1016/j.jhazmat.2020.122215
28 Cui M J, Ren S M, Xue Q J, et al. Carbon dots as new eco-friendly and effective corrosion inhibitor [J]. J. Alloy. Compd., 2017, 726: 680
doi: 10.1016/j.jallcom.2017.08.027
29 Luo J X, Cheng X, Chen X H, et al. The effect of N and S ratios in N, S co-doped carbon dot inhibitor on metal protection in 1 M HCl solution [J]. J. Taiwan Inst. Chem. Engineers, 2021, 127: 387
doi: 10.1016/j.jtice.2021.08.023
30 Abdelsalam M M, Bedair M A, Hassan A M, et al. Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution [J]. Arab. J. Chem., 2022, 15: 103491
doi: 10.1016/j.arabjc.2021.103491
31 Jiang B K, Chen A Y, Gu J F, et al. Corrosion resistance enhancement of magnesium alloy by N-doped graphene quantum dots and polymethyltrimethoxysilane composite coating [J]. Carbon, 2020, 157: 537
doi: 10.1016/j.carbon.2019.09.013
32 Daoud D, Douadi T, Hamani H, et al. Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study [J]. Corros. Sci., 2015, 94: 21
doi: 10.1016/j.corsci.2015.01.025
33 Ahamad I, Prasad R, Quraishi M A. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions [J]. Corros. Sci., 2010, 52: 933
doi: 10.1016/j.corsci.2009.11.016
34 Kıcır N, Tansuğ G, Erbil M, et al. Investigation of ammonium (2,4-dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel [J]. Corros. Sci., 2016, 105: 88
doi: 10.1016/j.corsci.2016.01.006
35 Saraswat V, Yadav M. Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor [J]. Colloid. Surf., 2021, 627A: 127172
36 Du R G, Liu Y, Lin C J. Effect of chlorine ions on the corrosion behavior of reinforcing steel in concrete [J]. Mater. Prot., 2006, 39(6): 45
36 杜荣归, 刘 玉, 林昌健. 氯离子对钢筋腐蚀机理的影响及其研究进展 [J]. 材料保护, 2006, 39(6): 45
37 Liu Y, Guo X X, Liu D L, et al. Inhibition effect of sparteine isomers with different stereochemical conformations on the corrosion of mild steel in hydrochloric acid solution [J]. J. Mol. Liq., 2022, 345: 117833
doi: 10.1016/j.molliq.2021.117833
[1] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[2] 魏高飞, 邓书端, 邵丹丹, 徐娟, 李向红. 滇润楠叶提取物对铝在HCl中的缓蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(3): 601-611.
[3] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[4] 欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[5] 柳泽邦, 冉博元, 裴恒, 罗凯林, 赵智斌, 韩鹏, 强玉杰. 金属铝用复配缓蚀剂协同缓蚀作用研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322.
[6] 周达, 李向红, 雷然, 邓书端. 三氯乙酸中十二烷基二甲基苄基氯化铵在冷轧钢表面的吸附及缓蚀作用[J]. 中国腐蚀与防护学报, 2024, 44(1): 82-90.
[7] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[8] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[9] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[10] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[11] 李树丽, 邓书端, 李向红. 铝植物缓蚀剂的研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[12] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[13] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[14] 周坤, 柳鑫华, 刘帅. 在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[15] 黄苗, 王丽姿, 马晓青, 李向红. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.