Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 197-203     CSTR: 32134.14.1005.4537.2023.058      DOI: 10.11902/1005.4537.2023.058
  研究报告 本期目录 | 过刊浏览 |
合成水化硅酸钙(C-S-H)对水泥基材料Cl- 结合性能的影响
张余果1,2,3, 孙丛涛1,2,3(), 张鹏1, 孙明2,3, 耿圆洁3,4, 樊亮2,3, 翟晓凡2,3, 段继周2,3
1.青岛理工大学土木工程学院 青岛 266033
2.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
3.崂山实验室海洋腐蚀与防护开放工作室 青岛 266237
4.内蒙古科技大学土木工程学院 包头 014010
Effect of Synthetic Calcium Silicate Hydrate (C-S-H) on Combination of Chloride Ions with Cementitious Materials
ZHANG Yuguo1,2,3, SUN Congtao1,2,3(), ZHANG Peng1, SUN Ming2,3, GENG Yuanjie3,4, FAN Liang2,3, ZHAI Xiaofan2,3, DUAN Jizhou2,3
1.School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
3.Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
4.School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
引用本文:

张余果, 孙丛涛, 张鹏, 孙明, 耿圆洁, 樊亮, 翟晓凡, 段继周. 合成水化硅酸钙(C-S-H)对水泥基材料Cl- 结合性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 197-203.
Yuguo ZHANG, Congtao SUN, Peng ZHANG, Ming SUN, Yuanjie GENG, Liang FAN, Xiaofan ZHAI, Jizhou DUAN. Effect of Synthetic Calcium Silicate Hydrate (C-S-H) on Combination of Chloride Ions with Cementitious Materials[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 197-203.

全文: PDF(6136 KB)   HTML
摘要: 

通过合成水化硅酸钙(C-S-H),研究了内掺C-S-H对水泥净浆Cl-结合性能的影响。采用XRD、TG-DTG、SEM以及EDS分析了水泥水化产物随龄期的物相演化和微观形貌变化。结果表明,净浆试件中自由Cl-含量随龄期的增加皆呈先下降后上升的趋势。在龄期7、14和21 d时,掺加C-S-H组净浆自由Cl-含量均大于未掺加C-S-H组,这是因为掺加的C-S-H粒径相对较大,比表面积相对较小,使得净浆中C-S-H总比表面积减小,降低了C-S-H对Cl-的结合;其次,在水泥净浆中掺加C-S-H能够促进水泥水化,提高水化早期pH值,高pH值也不利于C-S-H对Cl-的吸附;再次,掺加C-S-H净浆水化早期无Friedel's盐生成,化学结合Cl-能力较弱。在龄期28 d时,掺加C-S-H组净浆中有Friedel's盐的生成,化学结合提高了Cl-结合量,故两组净浆自由Cl-含量较为相近。由于28 d时掺加C-S-H组净浆中存在较多SiO2,易发生火山灰反应生成低钙硅比的C-S-H以及pH值降低影响Friedel's盐稳定性,使得35 d时自由Cl-含量上升明显。

关键词 水泥净浆Cl-水化硅酸钙Cl-结合pH值    
Abstract

Mixtures of cement-based material with the addition of synthetic calcium silicate hydrated (C-S-H) was prepared, then the effect of internal admixture of C-S-H on the evolution of the combination of chloride ions with the cement paste during aging process was investigated by means of XRD, TG-DTG, SEM and EDS. The results showed that the quantity of free chloride ions in the test pieces tended to decrease and then increase with aging process. At the ages of 7, 14 and 21 d, the quantity of free chloride ions in the cement paste with C-S-H was higher than that without C-S-H. This was due to the relatively larger particle size and smaller specific surface area of C-S-H, which reduced the total specific surface area of C-S-H in the cement paste and reduced the combination amount of C-S-H to chloride ions; in addition, the addition of C-S-H to the cement paste could promote the hydration of cement and increase the pH value in the early hydration period, and the high pH value is not conducive to the adsorption of C-S-H on chloride ions; and there is no Friedel's salt generation in the early hydration period of the cement paste mixed with C-S-H, so that weaken the chemical combination ability for chloride ions. At the age of 28 d, Friedel's salt was generated in the cement paste with addition of C-S-H, thus the amount of chemical combination of chloride ions increased, so the free chloride ion quantity of the two groups of cement paste was more similar. Due to more SiO2 existed in the cement paste with C-S-H at 28 d, the pozzolanic reaction to generate C-S-H with low Ca/Si and the decrease in pH value affecting Friedel's salt stability, the amount of free chloride ions increased significantly at 35 d.

Key wordscement paste    chloride ions    calcium silicate hydration    chloride binding    pH value
收稿日期: 2023-03-06      32134.14.1005.4537.2023.058
ZTFLH:  TU528.01  
基金资助:山东省自然科学基金重点项目(ZR2020KE046);国家重大科研仪器研制项目(41827805)
通讯作者: 孙丛涛,E-mail:suncongtao@qdio.ac.cn,研究方向为钢筋混凝土的耐久性
Corresponding author: SUN Congtao, E-mail: suncongtao@qdio.ac.cn
作者简介: 张余果,女,1997年生,硕士生
图1  合成的C-S-H粉末形貌
图2  合成的C-S-H粉体粒径分布
图3  合成的C-S-H粉末的红外光谱图
Specimen numberCementC-S-H
OC100.000.00
CC-2.00%98.002.00
CC-2.25%97.752.25
CC-2.50%97.502.50
CC-2.75%97.252.75
CC-3.00%97.003.00
表1  水泥试件中C-S-H添加比例 (mass fraction / %)
图4  水泥净浆自由Cl-含量随龄期变化规律
图5  水泥净浆pH值随龄期变化规律
图6  水泥净浆各龄期的X射线衍射图谱
图7  水泥净浆各龄期的热重分析曲线
图8  水泥净浆各龄期的SEM像与EDS图谱
1 Qu F L, Li W G, Dong W K, et al. Durability deterioration of concrete under marine environment from material to structure: a critical review [J]. J. Build. Eng., 2021, 35: 102074
2 Sun W. Modern concrete materials and structure service characteristics and the development [J]. China Concr., 2009, (7): 20
2 孙 伟. 现代混凝土材料与结构服役特性的研究进展 [J]. 混凝土世界, 2009, (7): 20
3 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
3 万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
4 Wang X G, Shi C J, He F Q, et al. Chloride binding and its effects on microstructure of cement-based materials [J]. J. Chin. Ceram. Soc., 2013, 41: 187
4 王小刚, 史才军, 何富强 等. Cl-结合及其对水泥基材料微观结构的影响 [J]. 硅酸盐学报, 2013, 41: 187
5 Luo D M, Niu D T. Durability evaluation of concrete structure based on reinforcement corrosion [J]. Ind. Constr., 2022, 52: 1
5 罗大明, 牛荻涛. 基于钢筋锈蚀的混凝土结构耐久性评定 [J]. 工业建筑, 2022, 52: 1
6 Chen H, Fan Z B, Chen Z J, et al. Effect of Cl- and HSO 3 - on corrosion behavior of 439 stainless steel used in construction [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 493
6 陈 昊, 樊志彬, 陈志坚 等. Cl-与HSO 3 - 对建筑用439不锈钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 493
7 Gou M F, Guan X M, Sun Q. Adsorption of chloride ion by calcium silicate hydrate [J]. J. Build. Mater., 2015, 18: 363
7 勾密峰, 管学茂, 孙 倩. 水化硅酸钙对Cl-的吸附 [J]. 建筑材料学报, 2015, 18: 363
8 Zhou Y, Hou D S, Jiang J Y, et al. Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: the influence of calcium to silicate ratios [J]. Microporous Mesoporous Mat., 2018, 255: 23
9 Jain A, Gencturk B, Pirbazari M, et al. Influence of pH on chloride binding isotherms for cement paste and its components [J]. Cem. Concr. Res., 2021, 143: 106378
doi: 10.1016/j.cemconres.2021.106378
10 Peng X Q, Lan C, Wang S P, et al. Effects of the C-S-H powder on the hydration process and mechanism of cement [J]. J. Build. Mater., 2015, 18: 195
10 彭小芹, 兰 聪, 王淑萍 等. 水化硅酸钙粉体对水泥水化反应过程及机理的影响 [J]. 建筑材料学报, 2015, 18: 195
11 Nicoleau L. New calcium silicate hydrate network [J]. Transp. Res. Rec.: J. Transp. Res. Board, 2010, 2142: 42
doi: 10.3141/2142-07
12 Miao Y F. Corrosion behavior of steel in simulated concrete pore solutions treated with calcium silicate hydrates [D]. Beijig: Beijing University of Chemical Technology, 2011
12 苗永法. 水化硅酸钙对混凝土模拟孔隙液中钢筋腐蚀行为的影响 [D]. 北京: 北京化工大学, 2011
13 Jennings H M. A model for the microstructure of calcium silicate hydrate in cement paste [J]. Cem. Concr. Res., 2000, 30: 101
doi: 10.1016/S0008-8846(99)00209-4
14 Damidot D, Lors C. Mutual interaction between hydration of portland cement andstructure and stoichiometry of hydrated calsium silicate [J]. J. Chin. Ceram. Soc., 2015, 43: 1324
15 Sun M, Sun C T, Zhang P, et al. Effects of chloride introduced way and metakaolin on chloride binding capacity of mortar [J]. Bull. Chin. Ceram. Soc., 2021, 40: 1154
15 孙 明, 孙丛涛, 张鹏 等. Cl-掺入方式及偏高岭土对砂浆Cl-结合性能的影响 [J]. 硅酸盐通报, 2021, 40: 1154
16 Li H, Sun W, Zuo X B. Effect of mineral admixtures on sulfate attack resistance of cement-based materials [J]. J. Chin. Ceram. Soc., 2012, 40: 1119
16 李 华, 孙 伟, 左晓宝. 矿物掺合料改善水泥基材料抗硫酸盐侵蚀性能的微观分析 [J]. 硅酸盐学报, 2012, 40: 1119
17 Chang H L, Wang X L, Wang Y F, et al. Chloride binding behavior of cement paste influenced by metakaolin dosage and chloride concentration [J]. Cem. Concr. Compos., 2023, 135: 104821
doi: 10.1016/j.cemconcomp.2022.104821
18 Zhang J, Shi C J, Zhang Z H. Chloride binding of alkali-activated slag/fly ash cements [J]. Constr. Build. Mater., 2019, 226: 21
doi: 10.1016/j.conbuildmat.2019.07.281
19 Ming X, Liu Q, Wang M M, et al. Improved chloride binding capacity and corrosion protection of cement-based materials by incorporating alumina nano particles [J]. Cem. Concr. Compos., 2023, 136: 104898
doi: 10.1016/j.cemconcomp.2022.104898
20 Zhang C Y, Cai Y, Kong X M, et al. Influence of Nano C-S-H on cement hydration, pore structure of hardened cement pastes and strength of concrete [J]. J. Chin. Ceram. Soc., 2019, 47: 585
20 张朝阳, 蔡 熠, 孔祥明 等. 纳米C-S-H对水泥水化、硬化浆体孔结构及混凝土强度的影响 [J]. 硅酸盐学报, 2019, 47: 585
21 Thomas J J, Jennings H M, Chen J J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement [J]. J. Phys. Chem., 2009, 113C: 4327
22 Dong W C, Kang D J, Wang L J. Volcanic ash effect of fly ash in fly ash concrete review [J]. World Build. Mater., 2004, 25: 28
22 董文辰, 康德君, 王立久. 粉煤灰混凝土中粉煤灰的火山灰效应综述 [J]. 国外建材科技, 2004, 25: 28
23 Shi H S, Fang Z F. Influence of fly ash on early hydration and pore structure of cement pastes [J]. J. Chin. Ceram. Soc., 2004, 32: 95
23 施惠生, 方泽锋. 粉煤灰对水泥浆体早期水化和孔结构的影响 [J]. 硅酸盐学报, 2004, 32: 95
24 Wang Y Y, Shui Z H, Gao X, et al. Chloride binding behaviors of metakaolin-lime hydrated blends: Influence of gypsum and atmospheric carbonation [J]. Constr. Build. Mater., 2019, 201: 380
doi: 10.1016/j.conbuildmat.2018.12.162
25 Sun M, Sun C T, Zhang P, et al. Influence of carbonation on chloride binding of mortars made with simulated marine sand [J]. Constr. Build. Mater., 2021, 303: 124455
[1] 刘晶, 陈宣东, 虞爱平, 巩新枝. 再生混凝土氯离子扩散多相细观数值模拟[J]. 中国腐蚀与防护学报, 2023, 43(5): 1111-1118.
[2] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[3] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[4] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[5] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[6] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[7] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[8] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[9] 陈宣东, 章青, 顾鑫, 李星. 基于概率分析的钢筋混凝土结构服役寿命预测研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[10] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[11] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[12] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[13] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[14] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[15] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.