Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 851-855    DOI: 10.11902/1005.4537.2021.300
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
基于海洋大气环境因素影响下的碳钢腐蚀特征研究
万晔(), 宋芳龄, 李立军
沈阳建筑大学材料科学与工程学院 沈阳 110168
Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres
WAN Ye(), SONG Fangling, LI Lijun
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
全文: PDF(9217 KB)   HTML
摘要: 

研究了碳钢在模拟海洋大气环境中的腐蚀特征,探讨了紫外线及Cl-对碳钢腐蚀行为的影响。采用双束聚焦离子束系统考察了碳钢点蚀孔洞中点蚀产物三维形貌特征,利用X射线透射仪检测点蚀产物的立体构造。结果表明,在薄液膜环境中,在紫外光线辐照条件下碳钢表面发生钝化,在海洋大气环境中碳钢因Cl-的侵蚀作用,表面发生明显的点蚀现象。点蚀发展后长大为三维核壳结构的花样点蚀产物,点蚀花的核心Cl-浓度高、氧含量极低,而点蚀花壳上的Cl-浓度低、氧含量较高。点蚀底部Cl-浓度最高,具有自催化效应腐蚀机制。

关键词 碳钢点蚀海洋大气Cl-    
Abstract

Marine atmospheric parameters, such as UV light irradiation, temperature, relative humidity, and chloride ions, may affect the corrosion behavior of metallic materials. The effects of the UV lights irradiation and chloride ions on pitting corrosion behaviors of carbon steel were investigated in a simulated marine atmospheres. The 3D images of the pitting were revealed via a combination of dual-beam focused ion beam system with scanning electron microscope (FIB/SEM) system, while the 3D stereoscopic vision was examined by using an X-ray micro-tomography. The results show that UV light irradiation could induce passivation of the carbon steel beneath a thin liquid film, and thus a thin oxide film might form on the carbon steel surface. Pitting corrosion occurred due to the aggressive chloride ions piercing through the oxide film on the surface of carbon steel. Three dimensional (3D) images demonstrated that the flowers-like pitting corrosion products with core-shell structure were formed as the pitting developed. The elemental distributions in the pitting areas exhibited high content of chloride and low content of oxygen in the core, while low content of chloride and high content of oxygen in the shell. The content of chloride ions was the highest in the bottoms of the pits, which then resulted in a pitting mechanism related with autocatalytic reaction.

Key wordscarbon steel    pitting corrosion    marine atmosphere    chloride ion
收稿日期: 2021-10-25     
ZTFLH:  TG174  
基金资助:辽宁省“兴辽英才计划”项目(XLYC2002005);辽宁省教育厅项目(lnjc202016);辽宁省教育厅项目(lnqn202019)
通讯作者: 万晔     E-mail: ywan@sjzu.edu.cn
Corresponding author: WAN Ye     E-mail: ywan@sjzu.edu.cn
作者简介: 万晔,女,1972年生,博士,教授

引用本文:

万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
Ye WAN, Fangling SONG, Lijun LI. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 851-855.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.300      或      https://www.jcscp.org/CN/Y2022/V42/I5/851

图1  NaCl沉积样品在净化空气中暴露24 h后的表面形貌,腐蚀瘤中间截面三维形貌及元素线扫描曲线
图2  镶在样品台上点蚀花的截面主视图和扣除样品台后点蚀花的侧视图
图3  NaCl沉积碳钢样品在紫外光线辐照 (185 nm) 的净化空气中暴露24 h后的表面形貌,点蚀花纵向截面三维形貌,元素纵向和横向及元素的线扫描曲线
图4  NaCl沉积碳钢样品在紫外光线辐照 (245和365 nm) 的净化空气中暴露24 h后的表面形貌,点蚀花纵向截面三维形貌及元素的纵向线扫描曲线
图5  碳钢在0.5 mm薄液膜 (0.6 mol·L-1 NaCl)、波长为365 nm及强度为0.3 mW/cm2的紫外光线辐照条件下的极化曲线
Illumination conditionIcorr / A·cm-2Ecorr vs SCE / VRp / Ω·cm2
No UV light2.9719×10-5-0.53034877.78
With UV light1.6304×10-5-0.463781600
表1  采用CorrView2软件对图5拟合所得电化学参数
1 Soares C G, Garbatov Y, Zayed A, et al. Influence of environmental factors on corrosion of ship structures in marine atmosphere [J]. Corros. Sci., 2009, 51: 2014
doi: 10.1016/j.corsci.2009.05.028
2 Wang Y, Mu X, Dong J H, et al. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76: 41
doi: 10.1016/j.jmst.2020.11.021
3 Chen W J, Fang L, Pan G. Corrosion evolution characteristics of Q235B steel in O3/SO2 composite atmosphere [J]. J. Chin. Soc. Corros. Prot., 2021, 41(4): 450
3 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性 [J]. 中国腐蚀与防护学报. 2021, 41(4): 450
4 Street S R, Mi N, Cook A J M C, et al. Atmospheric pitting corrosion of 304L stainless steel: the role of highly concentrated chloride solutions [J]. Faraday Discuss., 2015, 180: 251
doi: 10.1039/C4FD00246F
5 Schindelholz E, Risteen B E, Kelly R G. Effect of relative humidity on corrosion of steel under sea salt aerosol proxies: I. NaCl [J]. J. Electrochem. Soc., 2014, 161: C450
doi: 10.1149/2.0221410jes
6 Wan Y, Tan J, Zhu S T, et al. Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM [J]. Corros. Sci., 2019, 152: 226
doi: 10.1016/j.corsci.2019.03.017
7 Wu H Y, Lei H G, Frank C Y. Study on corrosion models of structural steel exposed in urban industrial atmospheric and laboratory simulated environments based on the 3D profile [J]. Thin-Wall. Struct., 2021, 168: 108286
doi: 10.1016/j.tws.2021.108286
8 Zhi Y J, Jin Z H, Lu L, et al. Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model [J]. Corros. Sci., 2021, 178: 109084
doi: 10.1016/j.corsci.2020.109084
9 Rice D W, Peterson P, Rigby E B, et al. Atmospheric corrosion of copper and silver [J]. J. Electrochem. Soc., 1981, 128: 275
doi: 10.1149/1.2127403
10 Henriksen J F. The distribution of NaCl on Fe during atmospheric corrosion [J]. Corros. Sci., 1969, 9: 573
doi: 10.1016/S0010-938X(69)80112-5
11 Graedel T E, Frankenthal R P. Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere [J]. J. Electrochem. Soc., 1990, 137: 2385
doi: 10.1149/1.2086948
12 Guo M X, Tang J R, Peng C, et al. Effects of salts and its mixing ratio on the corrosion behavior of 316 stainless steel exposed to a simulated salt-lake atmospheric environment [J]. Mater. Chem. Phys., 2022, 276: 125380
doi: 10.1016/j.matchemphys.2021.125380
[1] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[2] 郭娜, 毛晓敏, 惠芯蕊, 郭章伟, 刘涛. 海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[3] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[4] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[5] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[6] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[7] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[8] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[9] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[10] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[11] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[12] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[13] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[14] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[15] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.