Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 845-850    DOI: 10.11902/1005.4537.2021.261
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
含铜耐候钢热轧开裂现象分析
王雷1(), 董俊华2, 顾怀章1, 柯伟3
1.凯里学院理学院 凯里 556011
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学院金属研究所 材料环境腐蚀研究中心 沈阳 110016
Analysis on Cracking Phenomenon of a Hot-rolling Cu-bearing Weathering Steel
WANG Lei1(), DONG Junhua2, GU Huaizhang1, KE Wei3
1.School of Life and Health Science, Kaili University, Kaili 556011, China
2.Shenyang National Laboratory for Matericals Science, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Environmental Corrosion Research Center for Materials, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(9230 KB)   HTML
摘要: 

通过微观形貌观察及EPMA面扫描对钢中元素分布情况的观察分析,对热轧含铜耐候钢开裂部位进行了研究。对Mn、S在热轧含铜钢及氧化皮中的分布特征进行了初步讨论,对比分析了富Cu相在热轧和未轧制含铜钢中不同的富集特征,提出了热轧含Cu耐候钢裂纹开裂的三种模式,在热轧应力的作用下,钢晶界氧化、晶界处钢的内氧化与富Cu相在裂纹中的富集都会促使钢进一步发生较严重的开裂。

关键词 含铜钢开裂富Cu相钢/氧化皮界面    
Abstract

The cracking phenomenon of a hot-rolled Cu-bearing weathering steel was analyzed by means of micromorphology observation and EPMA surface examination. The distribution characteristics of Mn and S in the hot-rolled Cu-bearing steel and the formed oxide scale are preliminarily assessed, the different enrichment characteristics of Cu-rich phase in copper-bearing steels before and after hot-rolling are comparatively analyzed, and three modes of cracking of hot-rolled Cu bearing weathering steel are put forward. With the synergistic action of hot rolling stress, the grain boundary oxidation, internal oxidation of steel at grain boundary and the enrichment of Cu rich phase in the crack will promote the further serious cracking of the steel.

Key wordsCu-containing steel    cracking    Cu rich phase    steel/scale interface
收稿日期: 2021-09-27     
ZTFLH:  TG142  
基金资助:凯里学院博士启动项目(BS201814);国家自然科学基金(31760191)
通讯作者: 王雷     E-mail: 2015163582@qq.com
Corresponding author: WANG Lei     E-mail: 2015163582@qq.com
作者简介: 王雷,男,1970年生,博士,副教授

引用本文:

王雷, 董俊华, 顾怀章, 柯伟. 含铜耐候钢热轧开裂现象分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 845-850.
Lei WANG, Junhua DONG, Huaizhang GU, Wei KE. Analysis on Cracking Phenomenon of a Hot-rolling Cu-bearing Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 845-850.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.261      或      https://www.jcscp.org/CN/Y2022/V42/I5/845

图1  热轧后耐候钢边角部位开裂形貌
图2  含铜耐候钢中心部位和龟裂部位光学显微形貌及微观组织SEM形貌
图3  含铜耐候钢龟裂部位光学显微形貌
图4  含铜耐候钢龟裂部位光学显微形貌及SEM形貌
图5  含铜耐候钢龟裂部位及非龟裂部位背散射电子图像及Cu、Mn、S、O、Fe分布
图6  贯穿性裂纹中富铜相形貌图
1 Wang D Y. Concise Forging Manual [M]. Beijing: Machinery Industry Press, 2004: 3
1 王德拥. 简明锻工手册 [M]. 北京: 机械工业出版社, 2004: 3
2 Melford D A. Surface hot shortness in mild steel [J]. J. Iron Steel Inst., 1962, 200: 290
3 Nicholson A, Murray J D. Surface hot shortness in low-carbon steel [J]. J. Iron Steel Inst., 1965, 203: 1007
4 Salter W J M. Effects of alloying elements on solubility and surface energy of copper in mild steel [J]. J. Iron Steel Inst., 1966, 204: 478
5 Fisher G L. The effect of nickel on the high-temperature oxidation characteristics of copper-bearing steels [J]. J. Iron Steel Inst., 1969, 207: 1010
6 Hydrean P P, Kitchin A L, Schaller F W. Hot rolling and heat treatment of Ni-Cu-Cb(Nb) steel [J]. Metall. Trans., 1971, 2: 2541
7 Le May I, Schetky L M. Copper in Iron and Steel [M]. New York: John Wiley & Sons, 1982: 45
8 Suzuki H G. Strain rate dependence of Cu embrittlement in steels [J]. ISIJ Int., 1997, 37: 250
doi: 10.2355/isijinternational.37.250
9 Shao W R, Wang Y L, Chen N J, et al. The effect of copper segregation on cracks of hot-rolled light gauge strips in CSP line [J]. J. Chin. Electr. Microsc. Soc., 2002, 21: 731
9 邵伟然, 王元立, 陈南京 等. CSP工艺热轧钢带中Cu的偏聚对裂纹的影响 [J]. 电子显微学报, 2002, 21: 731
10 Shibata K, Seo S J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels [J]. Mater. Trans., 2002, 43: 292
doi: 10.2320/matertrans.43.292
11 Li Y, Song B, Mao J H, et al. Copper precipitation behavior in Cu-Fe alloys [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 579
11 李岩, 宋波, 毛璟红 等. Fe-Cu合金体系中Cu析出规律 [J]. 北京科技大学学报, 2009, 31: 579
12 Wang L, Zhang S X, Dong J H, et al. Surface crazing of Mn-Cu weathering steel [J]. Acta Metall. Sin., 2010, 46: 723
doi: 10.3724/SP.J.1037.2010.00723
12 王雷, 张思勋, 董俊华 等. Mn-Cu耐候钢的表面龟裂 [J]. 金属学报, 2010, 46: 723
doi: 10.3724/SP.J.1037.2009.00501
13 Wang L, Dong J H, Han D, et al. Phenonmenon of Cu segregation in Cu-containing steel during soaking at 1150 ℃ [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 545
13 王雷, 董俊华, 韩达 等. 含铜钢在1150 ℃高温保温条件下的铜偏聚现象 [J]. 中国腐蚀与防护学报, 2020, 40: 545
14 Zhang Y B. Application of high-performance weather-proof steel in steel plate composite beam bridge [J]. Constr. Des. Project, 2020, (3): 236
14 张钰伯. 高性能耐候钢在钢板组合梁桥中的应用 [J]. 工程建设与设计, 2020, (3): 236
15 Cheng P, Huang X Q, Pang T, et al. Research status and development trend of weathering bridge steel [J]. Mater. Prot., 2020, 53(7): 142
15 程鹏, 黄先球, 庞涛 等. 耐候桥梁钢的研究现状与发展趋势 [J]. 材料保护, 2020, 53(7): 142
16 Wang C S, Zhang J W, Duan L, et al. Research progress and engineering application of long lasting high performance weathering steel bridges [J]. J. Traffic Trans. Eng., 2020, 20(1): 1
16 王春生, 张静雯, 段兰 等. 长寿命高性能耐候钢桥研究进展与工程应用 [J]. 交通运输工程学报, 2020, 20(1): 1
17 Hao X H, Dong J H, Wei J, et al. Influence of microstructure of AH32 corrosion resistant steel on corrosion behavior [J]. Acta Metall. Sin., 2012, 48: 534
doi: 10.3724/SP.J.1037.2012.00105
17 郝雪卉, 董俊华, 魏洁 等. AH32耐蚀钢显微组织对其腐蚀行为的影响 [J]. 金属学报, 2012, 48: 534
doi: 10.3724/SP.J.1037.2012.00105
18 Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
doi: 10.1016/j.jmst.2014.10.013
19 Hao X H, Dong J H, Wei J, et al. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank [J]. Corros. Sci., 2017, 121: 84
doi: 10.1016/j.corsci.2017.03.012
20 Huo X W. Formation reason and control measure of surface crazing of maglev vehicle sleeper weather resisting H beam [J]. Shandong Metall., 2021, 43(3): 3
20 霍喜伟. 磁浮列车轨枕用耐候H型钢表面龟裂的成因及控制 [J]. 山东冶金, 2021, 43(3): 3
21 Gao Y, Zhou X, Wang X D, et al. Study on defect analysis and control measures of copper-brittleness of dual phase steel containing copper [J]. Hot Work. Technol., 2017, 46: 246
21 高月, 周旬, 王晓东 等. 含铜双相钢“铜脆”缺陷分析与控制措施研究 [J]. 热加工工艺, 2017, 46: 246
22 Mao H X, Zhang W Z. Effect of the residual copper in steel on the product properties and its countermeasures [J]. Henan Metall., 2000, 8(3): 13
22 茅洪祥, 张望洲. 钢中残余铜的危害及其对策 [J]. 河南冶金, 2000, 8(3): 13
23 Li J H, Chen S H, Chen F Y. Reseach of surface defect in copper-containing hot rolling steel plate [J]. Phys. Test. Chem. Anal., 2006, 42A: 606
23 李建华, 陈士华, 陈方玉. 含铜热轧钢板表面缺陷的研究 [J]. 理化检验, 2006, 42A: 606
[1] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[2] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[3] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[4] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[5] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[6] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[7] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[8] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[9] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[10] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] 王雷, 董俊华, 韩达, 梁坚坤, 李权, 柯伟. 含铜钢在1150 ℃高温保温条件下的铜偏聚现象[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[12] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[13] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[14] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[15] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.