Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 274-280    DOI: 10.11902/1005.4537.2021.041
  研究报告 本期目录 | 过刊浏览 |
超细层片结构Al-4%Cu合金的点蚀行为
辛叶春, 徐伟, 赵东杨, 张波()
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy
XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3725 KB)   HTML
摘要: 

采用室温冷轧方法制备了具有超细层片结构的Al-4%Cu (质量分数) 合金,并利用SEM、TEM、显微硬度测试及动电位极化方法对比研究了晶界处元素偏聚及时效析出相对其点蚀行为的影响。结果表明,冷轧后Al-Cu合金平均层片间距159 nm,晶界处存在Cu的偏聚,其点蚀电位与粗晶样品相当。时效后,超细晶Al-Cu点蚀电位因晶界θ相的析出而降低。可见,Cu偏聚对Al-Cu合金的点蚀行为并无明显影响,但形成富Cu相后对点蚀行为影响显著。

关键词 超细层片元素偏聚析出相点蚀    
Abstract

The pitting corrosion behavior of ultra-fine lamellated (UFL) Al-4%Cu alloy prepared by cold rolling at room temperature has been studied by means of scanning electron microscope (SEM), transmission electron microscope (TEM), microhardness tester and potentiodynamic polarization measurement aiming to understand the effect of element segregation and precipitates at grain boundaries on pitting corrosion potential. The result shows that the average lamellar spacing of cold rolled Al-Cu alloy is 159 nm and there exists obvious segregation of Cu at boundaries. The pitting corrosion potential of the cold rolled Al-Cu is found to be similar to that of the coarse grain ones. After aging treatment, the pitting corrosion potential decreases obviously because of precipitation of second phases at grain boundaries. These results indicate that the element segregation at grain boundaries has no significant effect on the pitting corrosion behavior of Al-Cu alloy, while the precipitation of second phases rich in Cu can have an obvious effect on the pitting corrosion behavior.

Key wordsUltra-fine lamellar    element segregation    precipitates    pitting corrosion
收稿日期: 2021-03-05     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2017YFB0702103)
通讯作者: 张波     E-mail: bxz011@imr.ac.cn
Corresponding author: ZHANG Bo     E-mail: bxz011@imr.ac.cn
作者简介: 辛叶春,男,1996年,博士生

引用本文:

辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
Yechun XIN, Wei XU, Dongyang ZHAO, Bo ZHANG. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 274-280.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.041      或      https://www.jcscp.org/CN/Y2022/V42/I2/274

图1  冷轧后超细层片结构Al-4%Cu合金的结构表征
图2  显微硬度随退火温度的变化
图3  超细层片Al-4Cu合金150 ℃退火后结构表征
图4  80 ℃时效过程显微硬度变化及不同时效时间后的组织
图5  不同处理状态样品的极化曲线及72 h浸泡实验后的腐蚀形貌
图6  敏化后的超细晶样品经72 h浸泡实验后的点蚀形貌及元素分布图
1 Davis J R. Corrosion of Aluminum and Aluminum Alloys [M]. Ohio: ASM International, 1999
2 Wu S H, Zhang P, Shao D, et al. Grain size-dependent Sc microalloying effect on the yield strength-pitting corrosion correlation in Al-Cu alloys [J]. Mater. Sci. Eng., 2018, 721A: 200
3 Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys: An experimental survey and discussion [J]. J. Electrochem. Soc., 2005, 152: B140
4 Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Ann., 2008, 57: 716
5 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
6 Hu T, Ma K, Topping T D, et al. Precipitation phenomena in an ultrafine-grained Al alloy [J]. Acta Mater., 2013, 61: 2163
7 Brunner J G, Birbilis N, Ralston K D, et al. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J]. Corros. Sci., 2012, 57: 209
8 Shankar M R, Chandrasekar S, King A H, et al. Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining [J]. Acta Mater., 2005, 53: 4781
9 Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scr. Mater., 2002, 47: 893
10 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
11 Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
12 Li N, Li Y, Wang S G, et al. Corrosion behavior of nanocrystallized bulk 304 stainless steel I. The research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 80
12 李楠, 李瑛, 王胜刚等. 轧制纳米块体304不锈钢腐蚀行为的研究I.钝化膜耐氯离子侵蚀能力 [J]. 中国腐蚀与防护学报, 2007, 27: 80
13 Yue L L, Ma B J. Effect of ultrasonic surface rolling process on corrosion behavior of AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 560
13 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 560
14 Huang Y, Robson J D, Prangnell P B. The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al-4wt.% Cu alloy [J]. Acta Mater., 2010, 58: 1643
15 Yu S R, He Y N, Li S X, et al. Effect of grain size on susceptibility to intergranular corrosion for austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 70
15 俞树荣, 何燕妮, 李淑欣等. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 70
16 Xu W, Liu X C, Li X Y, et al. Deformation induced grain boundary segregation in nanolaminated Al-Cu alloy [J]. Acta Mater., 2020, 182: 207
17 Akiyama E, Zhang Z G, Watanabe Y, et al. Effects of severe plastic deformation on the corrosion behavior of aluminum alloys [J]. J. Solid State Electrochem., 2009, 13: 277
18 Zhang X, Yang G H, Wang Z H, et al. Corrosion behavior of Al-Mg-RE alloy wires subjected to different cold drawing deformation [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 432
18 张欣, 杨光恒, 王泽华等. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 432
19 Valiev R Z, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation [J]. JOM, 2006, 58(4): 33
20 Murdoch H A, Schuh C A. Stability of binary nanocrystalline alloys against grain growth and phase separation [J]. Acta Mater., 2013, 61: 2121
21 Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
22 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
23 Curry J F, Babuska T F, Furnish T A, et al. Achieving ultralow wear with stable nanocrystalline metals [J]. Adv. Mater., 2018, 30: 1802026
24 Shan G B, Chen Y Z, Li Y J, et al. High temperature creep resistance of a thermally stable nanocrystalline Fe-5at.%Zr steel [J]. Scr. Mater., 2020, 179: 1
25 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
26 Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
27 Petch N. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
28 Zhao H, De Geuser F, da Silva A K, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
29 Ralston K D, Birbilis N, Weyland M, et al. The effect of precipitate size on the yield strength-pitting corrosion correlation in Al–Cu-Mg alloys [J]. Acta Mater., 2010, 58: 5941
30 Wang J, Zhang B, Wu B, et al. Size-dependent role of S phase in pitting initiation of 2024Al alloy [J]. Corros. Sci., 2016, 105: 183
31 Zhu Y K, Poplawsky J D, Li S R, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2020, 189: 204
[1] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[2] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[3] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[4] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[5] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[6] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[7] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[8] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[9] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[10] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[11] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[12] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[13] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[14] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[15] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.