Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 309-316    DOI: 10.11902/1005.4537.2021.039
  研究报告 本期目录 | 过刊浏览 |
掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究
文家新1(), 张欣1, 刘云霞1, 周永福2, 刘克建2
1.重庆工业职业技术学院建筑工程学院 重庆 401120
2.重庆工业职业技术学院化学与制药工程学院 重庆 401120
Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel
WEN Jiaxin1(), ZHANG Xin1, LIU Yunxia1, ZHOU Yongfu2, LIU Kejian2
1.School of Civil Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
2.School of Chemistry and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
全文: PDF(6947 KB)   HTML
摘要: 

针对传统有机涂层在使用过程中易出现裂纹或缺陷,从而导致涂层保护提前失效的问题,在构筑富含缓蚀剂BTA的pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA的基础上,制备了一种掺杂BTA@MSNs-SO3H-PDDA的智能防腐涂层。通过扫描电镜、动态光散射粒度分析、X射线衍射分析、Fourier红外光谱、热重分析和紫外可见光谱对BTA@MSNs-SO3H-PDDA的结构和性能进行了表征。采用电化学阻抗谱和盐雾加速腐蚀实验对智能涂层进行了性能评价。结果表明:BTA@MSNs-SO3H-PDDA近似呈球形,平均粒径为718 nm,装载BTA的量约为13.37%,可灵敏地响应pH值变化而加速释放BTA分子。基于BTA@MSNs-SO3H-PDDA的智能涂层对碳钢腐蚀具有显著的智能防护性能。

关键词 碳钢智能涂层纳米容器腐蚀防护pH敏感性    
Abstract

Organic coatings are commonly used as an effective strategy for protecting carbon steel from corrosion, but the traditional organic coatings are susceptible to generate micron cracks or defects during service, resulting in the premature failure. In view of this problem, a novel benzotriazole containing nanocontainers, namely BTA@MSNs-SO3H-PDDA with pH-sensitivity was prepared firstly, then a BTA@MSNs-SO3H-PDDA doped smart organic coating was fabricated for application on carbon steel. The structure and performance of BTA@MSNs-SO3H-PDDA were characterized by scanning electron microscopy (SEM), dynamic light scattering analysis (DLS), X-ray diffraction analysis (XRD), infrared spectroscopy (FT-IR), thermogravimetry (TGA) and ultraviolet-visible spectroscopy (UV-Vis). The protective performance of the smart coatings for carbon steel was evaluated by electrochemical impedance spectroscopy and salt spray accelerated tests. The results showed that the particles of BTA@MSNs-SO3H-PDDA are near-spherical in shape, with an average diameter of 718 nm. The amount of BTA loaded in BTA@MSNs-SO3H-PDDA is about 13.37%. The releasing rate of BTA from BTA@MSNs-SO3H- PDDA can be accelerated via the sensitive response of the pH changes. The prepared smart coating based on BTA@MSNs-SO3H-PDDA presents remarkable anti-corrosion performance for carbon steel.

Key wordscarbon steel    smart coating    nanocontainers    corrosion protection    pH-sensitivity
收稿日期: 2021-03-04     
ZTFLH:  TG174.42  
基金资助:重庆市自然科学基金(cstc2020jcyj-msxmX1067);重庆市教委科学技术研究项目(KJQN202103202)
通讯作者: 文家新     E-mail: 18523976826@163.com
Corresponding author: WEN Jiaxin     E-mail: 18523976826@163.com
作者简介: 文家新,男,1983年生,博士,副教授

引用本文:

文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
Jiaxin WEN, Xin ZHANG, Yunxia LIU, Yongfu ZHOU, Kejian LIU. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 309-316.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.039      或      https://www.jcscp.org/CN/Y2022/V42/I2/309

图1  MSNs和BTA@MSNs-SO3H-PDDA的SEM像
图2  MSNs、MSNs-SO3H和BTA@MSNs-SO3H-PDDA的粒径分布图和XRD谱
图3  MSNs、MSNs-NH2、MSNs-SO3H、MSNs-SO3H-PDDA和BTA@MSNs-SO3H-PDDA的TGA曲线
图4  MSNs、MSNs-NH2、MSNs-SO3H、MSNs-SO3H-PDDA和BTA@MSNs-SO3H-PDDA的FT-IR谱
图5  BTA@MSNs-SO3H-PDDA在不同pH下的释放曲线
图6  掺杂不同量BTA@MSNs-SO3H-PDDA的智能涂层在3.5%NaCl溶液中浸泡不同时间后的电化学阻抗谱
图7  拟合EIS谱的等效电路图
图8  掺杂不同量BTA@MSNs-SO3H-PDDA的智能涂层的Rc值和Rct值随浸泡时间的变化
图9  不同涂层碳钢片在盐雾试验机中连续暴露240 h后的形貌
1 Zhang C, Lu Y, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and three cationic surfactants in H2S/CO2 brine solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 237
1 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2020, 40: 237
2 Zhang F, Ju P F, Pan M Q, et al. Self-healing mechanisms in smart protective coatings: A review [J]. Corros. Sci., 2018, 144: 74
3 He J, Yang C T, Li Z. Research progress of microbiologically influenced corrosion and protection in building industry [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 151
3 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 151
4 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
4 栾浩, 孟凡帝, 刘莉等. 间苯二胺—氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
5 Leal D A, Riegel-Vidotti I C, Ferreira M G S, et al. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection [J]. Corros. Sci., 2018, 130: 56
6 Siva T, Sathiyanarayanan S. Self-healing coatings containing dual active agent loaded urea formaldehyde (UF) microcapsules [J]. Prog. Org. Coat., 2015, 82: 57
7 Li Z, Qin B Y, Zhang X Y, et al. Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy [J]. RSC Adv., 2015, 5: 104451
8 Wen J X, Lei J L, Chen J L, et al. An intelligent coating based on pH-sensitive hybrid hydrogel for corrosion protection of mild steel [J]. Chem. Eng. J., 2020, 392: 123742
9 Yang P P, Gai S L, Lin J. Functionalized mesoporous silica materials for controlled drug delivery [J]. Chem. Soc. Rev., 2012, 41: 3679
10 Khashab N M, Belowich M E, Trabolsi A, et al. pH-Responsive mechanised nanoparticles gated by semirotaxanes [J]. Chem. Commun., 2009, (36): 5371
11 Tang J M, Zhang R T. Research progress on mesoporous silica nanoparticles [J]. Drugs Clin., 2015, 30: 1422
11 唐佳民, 张瑞涛. 介孔二氧化硅纳米粒的研究进展 [J]. 现代药物与临床, 2015, 30: 1422
12 Liang Y, Wang M D, Wang C, et al. Facile synthesis of smart nanocontainers as key components for construction of self-healing coating with superhydrophobic surfaces [J]. Nanoscale Res. Lett., 2016, 11: 231
13 Saremi M, Yeganeh M. Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings [J]. Corros. Sci., 2014, 86: 159
14 Kermannezhad K, Chermahini A N, Momeni M M, et al. Application of amine-functionalized MCM-41 as pH-sensitive nanocontainer for controlled release of 2-mercaptobenzoxazole corrosion inhibitor [J]. Chem. Eng. J., 2016, 306: 849
15 Chen H Y, Zheng D W, Liu J, et al. pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles [J]. Int. J. Biol. Macromol., 2016, 85: 596
16 Ye X, Li X, Shen Y Q, et al. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding [J]. Polymer, 2017, 108: 348
17 Li G L, Schenderlein M, Men Y J, et al. Monodisperse polymeric core-Shell nanocontainers for organic self-Healing anticorrosion coatings [J]. Adv. Mater. Interfaces, 2014, 1: 1300019
18 Sudarsan S, Franklin D S, Sakthivel M, et al. Non toxic, antibacterial, biodegradable hydrogels with pH-stimuli sensitivity: Investigation of swelling parameters [J]. Carbohydr. Polym., 2016, 148: 206
19 Zhao H, Gao J, Liu R N, et al. Stimulus-responsiveness and methyl violet release behaviors of poly (NIPAAm-co-AA) hydrogels chemically crosslinked with β-cyclodextrin polymer bearing methacrylates [J]. Carbohydr. Res., 2016, 428: 79
20 Xie R H, Ren P G, Hui J, et al. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior [J]. Carbohydr. Polym., 2016, 138: 222
21 Dinodi N, Shetty A N. Alkyl carboxylates as efficient and green inhibitors of magnesium alloy ZE41 corrosion in aqueous salt solution [J]. Corros. Sci., 2014, 85: 411
22 Maile F J, Schauer T, Eisenbach C D. Evaluation of corrosion and protection of coated metals with local ion concentration technique (LICT) [J]. Prog. Org. Coat., 2000, 38: 111
[1] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[2] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[3] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[4] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[7] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[8] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[9] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[10] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[11] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[12] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[14] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[15] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.