|
|
掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 |
文家新1( ), 张欣1, 刘云霞1, 周永福2, 刘克建2 |
1.重庆工业职业技术学院建筑工程学院 重庆 401120 2.重庆工业职业技术学院化学与制药工程学院 重庆 401120 |
|
Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel |
WEN Jiaxin1( ), ZHANG Xin1, LIU Yunxia1, ZHOU Yongfu2, LIU Kejian2 |
1.School of Civil Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China 2.School of Chemistry and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China |
引用本文:
文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
Jiaxin WEN,
Xin ZHANG,
Yunxia LIU,
Yongfu ZHOU,
Kejian LIU.
Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 309-316.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.039
或
https://www.jcscp.org/CN/Y2022/V42/I2/309
|
1 |
Zhang C, Lu Y, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and three cationic surfactants in H2S/CO2 brine solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 237
|
1 |
张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2020, 40: 237
|
2 |
Zhang F, Ju P F, Pan M Q, et al. Self-healing mechanisms in smart protective coatings: A review [J]. Corros. Sci., 2018, 144: 74
|
3 |
He J, Yang C T, Li Z. Research progress of microbiologically influenced corrosion and protection in building industry [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 151
|
3 |
何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 151
|
4 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
4 |
栾浩, 孟凡帝, 刘莉等. 间苯二胺—氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
5 |
Leal D A, Riegel-Vidotti I C, Ferreira M G S, et al. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection [J]. Corros. Sci., 2018, 130: 56
|
6 |
Siva T, Sathiyanarayanan S. Self-healing coatings containing dual active agent loaded urea formaldehyde (UF) microcapsules [J]. Prog. Org. Coat., 2015, 82: 57
|
7 |
Li Z, Qin B Y, Zhang X Y, et al. Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy [J]. RSC Adv., 2015, 5: 104451
|
8 |
Wen J X, Lei J L, Chen J L, et al. An intelligent coating based on pH-sensitive hybrid hydrogel for corrosion protection of mild steel [J]. Chem. Eng. J., 2020, 392: 123742
|
9 |
Yang P P, Gai S L, Lin J. Functionalized mesoporous silica materials for controlled drug delivery [J]. Chem. Soc. Rev., 2012, 41: 3679
|
10 |
Khashab N M, Belowich M E, Trabolsi A, et al. pH-Responsive mechanised nanoparticles gated by semirotaxanes [J]. Chem. Commun., 2009, (36): 5371
|
11 |
Tang J M, Zhang R T. Research progress on mesoporous silica nanoparticles [J]. Drugs Clin., 2015, 30: 1422
|
11 |
唐佳民, 张瑞涛. 介孔二氧化硅纳米粒的研究进展 [J]. 现代药物与临床, 2015, 30: 1422
|
12 |
Liang Y, Wang M D, Wang C, et al. Facile synthesis of smart nanocontainers as key components for construction of self-healing coating with superhydrophobic surfaces [J]. Nanoscale Res. Lett., 2016, 11: 231
|
13 |
Saremi M, Yeganeh M. Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings [J]. Corros. Sci., 2014, 86: 159
|
14 |
Kermannezhad K, Chermahini A N, Momeni M M, et al. Application of amine-functionalized MCM-41 as pH-sensitive nanocontainer for controlled release of 2-mercaptobenzoxazole corrosion inhibitor [J]. Chem. Eng. J., 2016, 306: 849
|
15 |
Chen H Y, Zheng D W, Liu J, et al. pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles [J]. Int. J. Biol. Macromol., 2016, 85: 596
|
16 |
Ye X, Li X, Shen Y Q, et al. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding [J]. Polymer, 2017, 108: 348
|
17 |
Li G L, Schenderlein M, Men Y J, et al. Monodisperse polymeric core-Shell nanocontainers for organic self-Healing anticorrosion coatings [J]. Adv. Mater. Interfaces, 2014, 1: 1300019
|
18 |
Sudarsan S, Franklin D S, Sakthivel M, et al. Non toxic, antibacterial, biodegradable hydrogels with pH-stimuli sensitivity: Investigation of swelling parameters [J]. Carbohydr. Polym., 2016, 148: 206
|
19 |
Zhao H, Gao J, Liu R N, et al. Stimulus-responsiveness and methyl violet release behaviors of poly (NIPAAm-co-AA) hydrogels chemically crosslinked with β-cyclodextrin polymer bearing methacrylates [J]. Carbohydr. Res., 2016, 428: 79
|
20 |
Xie R H, Ren P G, Hui J, et al. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior [J]. Carbohydr. Polym., 2016, 138: 222
|
21 |
Dinodi N, Shetty A N. Alkyl carboxylates as efficient and green inhibitors of magnesium alloy ZE41 corrosion in aqueous salt solution [J]. Corros. Sci., 2014, 85: 411
|
22 |
Maile F J, Schauer T, Eisenbach C D. Evaluation of corrosion and protection of coated metals with local ion concentration technique (LICT) [J]. Prog. Org. Coat., 2000, 38: 111
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|