Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 819-827    DOI: 10.11902/1005.4537.2020.218
  研究报告 本期目录 | 过刊浏览 |
核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应
王丽姿, 黄苗, 李向红()
西南林业大学化学工程学院 昆明 650224
Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution
WANG Lizi, HUANG Miao, LI Xianghong()
College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
全文: PDF(8147 KB)   HTML
摘要: 

以农林废弃物核桃青皮为原料,采用乙醇水溶液为提取剂进行回流提取制得核桃青皮提取物 (WGHE);通过全浸失重法研究了WGHE与碘化钾 (KI) 对冷轧钢在1.0 mol/L柠檬酸 (H3C6H5O7) 溶液介质中的缓蚀协同性能,并采用动电位极化曲线探究了电化学作用机理;借助扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 研究了钢表面的微观形貌和表面粗糙度。结果表明,WGHE及KI单独使用具有中等程度的缓蚀作用,最大缓蚀率分别为67.4%和69.3%;当WGHE与KI混合复配使用后,缓蚀性能显著上升,25 ℃时缓蚀协同效应系数大于1,两者之间存在缓蚀协同效应,200 mg/L WGHE与100 mg/L KI复配后的缓蚀率高达85.3%。WGHE、KI混合使用前后在冷轧钢的表面吸附规律均遵循 Langmuir吸附等温方程式,协同缓蚀剂WGHE/KI在钢表面的吸附平衡常数 (K) 进一步增大至0.0382 L/mg,而标准吸附Gibbs自由能 (ΔG0) 降低为-28.9 kJ/mol。WGHE、KI单独使用时对阴极反应产生了抑制作用,而WGHE与KI的复配物为混合抑制型缓蚀剂。SEM和AFM分析得出WGHE与KI混合使用后更能有效减缓柠檬酸介质对钢表面的腐蚀。

关键词 缓蚀剂缓蚀协同效应吸附核桃青皮碘化钾柠檬酸    
Abstract

Walnut green husk extract (WGHE) was obtained from the raw materials of forestry and agricultural residue of walnut green husk by circulation reflux method with ethanol water solution as extractive solvent. The synergistic inhibition performance and mechanism of WGHE and potassium iodide (KI) on the corrosion of a cold rolled steel (CRS) in 1.0 mol/L citric acid (H3C6H5O7) solution were assessed by means of immersion test, potentiodynamic polarization curve measurement, and electrochemical impedance spectroscopy (EIS), as well as scanning electron microscope (SEM) and atomic force microscope (AFM). The results showed that either individual WGHE or KI was a moderate inhibitor, and the maximum inhibition efficiency was 67.4% for WGHE and 69.3% for KI respectively. When WGHE was mixed with KI, the complex could promote the inhibitive action, and the synergism parameter was higher than 1 for the solution at 20 ℃. There was a synergism between WGHE and KI, and the maximum inhibition efficiency for the mixture of 200 mg/L WGHE with 100 mg/L KI was 85.3%. No matter when WGHE was mixed with KI, the adsorption of inhibitor molecules on CRS surface obeys Langmuir isotherm. The incorporation of WGHE with KI further increases the adsorption equilibrium constant (K) up to 0.0382 L/mg,while the standard Gibbs adsorption free energy (ΔG0) shifts more negatively to -28.9 kJ/mol. Potentiodynamic curves indicate that individual WGHE or KI mainly retards the cathodic reaction, while the mixture of WGHE/KI acts as a mixed-type inhibitor. SEM and AFM microphotographs confirm that the synergistic of WGHE and KI can more efficiently alleviate the citric acid induced corrosion of the cold rolled steel.

Key wordscorrosion inhibitor    synergistic inhibition effect    adsorption    steel    walnut green husk    potassium iodide    citric acid
收稿日期: 2020-10-31     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51761036);云南省农业基础研究联合专项 (2017FG001(-004)),云南省基础研究计划;杰出青年项目(202001AV070008);云南省万人计划青年拔尖人才专项(51900109)
通讯作者: 李向红     E-mail: xianghong-li@163.com
Corresponding author: LI Xianghong     E-mail: xianghong-li@163.com
作者简介: 王丽姿,女,1995年生,硕士生

引用本文:

王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
Lizi WANG, Miao HUANG, Xianghong LI. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 819-827.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.218      或      https://www.jcscp.org/CN/Y2021/V41/I6/819

图1  1.0 mol/L H3C6H5O7中缓蚀率 (ηw) 和缓蚀剂浓度 (c) 关系
图2  25~50 ℃时1.0 mol/L H3C6H5O7溶液中不同WGHE浓度 (c) 与100 mg/L KI的缓蚀协同效应系数 (s)
图3  1.0 mol/L H3C6H5O7溶液c/θ-c拟合直线
InhibitorT / ℃r2SlopeK / L·mg-1ΔG0 / kJ·mol-1
WGHE250.99812.080.0199-24.54
300.99581.260.0240-25.41
400.99251.340.0179-25.48
500.99361.240.0283-27.54
KI250.99931.450.0511-26.87
300.99641.270.0526-27.39
400.97871.610.0168-25.31
500.95391.600.0137-25.58
WGHE+ 100 mg/L KI250.99961.170.1112-28.80
300.99981.130.1147-29.36
400.99921.130.0362-27.33
500.99931.130.0473-28.94
表1  c/θ-c线性回归参数
图4  25 ℃时冷轧钢在不含和含有WGHE、KI及WGHE/KI的1.0 mol/L H3C6H5O7溶液中的动电位极化曲线
InhibitorEcorr mV vs. SCEIcorrμA·cm-2-bcmV·dec-1bamV·dec-1ηp%
----41710222366---
WGHE-431622075539.2
KI-431261674674.5
WGHE+KI-461141544086.3
表2  25 ℃时冷轧钢在1.0 mol/L H3C6H5O7中不含和含有WGHE、KI及WGHE/KI的动电位极化曲线参数
图5  冷轧钢浸泡前后表面的SEM微观形貌
图6  冷轧钢浸泡前后表面的AFM微观形貌
CRS surfaceRa / nmRq / nmRmax / nm
Before immersion45.656.2291
H3C6H5O71301821460
H3C6H5O7+WGHE96.3119950
H3C6H5O7+KI1822321510
H3C6H5O7+WGHE+KI2412912420
表3  冷轧钢表面的AFM微观形貌的表面粗糙度参数
1 Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review [J]. Corros. Sci., 2014, 86: 17
2 Verma C, Ebenso E E, Bahadur I, et al. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media [J]. J. Mol. Liq., 2018, 266: 577
3 Li X H, Xu X, Deng S D. Research progress and prospects of the inhibition of plant corrosion inhibitors to steel [J]. Clean. World, 2018, 34(9): 39
3 李向红, 徐昕, 邓书端. 植物缓蚀剂对钢的缓蚀作用研究进展与展望 [J]. 清洗世界, 2018, 34(9): 39
4 M'hiri N, Veys-Renaux D, Rocca E, et al. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds [J]. Corros. Sci., 2016, 102: 55
5 Casaletto M P, Figà V, Privitera A, et al. Inhibition of Cor-Ten steel corrosion by “green” extracts of Brassica campestris [J]. Corros. Sci., 2018, 136: 91
6 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
6 王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
7 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
7 张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
8 Ituen E, James A, Akaranta O, et al. Eco-friendly corrosion inhibitor from Pennisetum purpureum biomass and synergistic intensifiers for mild steel [J]. Chin. J. Chem. Eng., 2016, 24: 1442
9 Lu Y, Zheng X W, Liu X L, et al. Corrosion inhibition of Ficus Microcarpa leaves extract and its synergistic effect with KI in sulfuric acid [J]. Surf. Technol., 2013, 42(3): 28
9 卢燕, 郑兴文, 刘新露等. 硫酸介质中榕树叶提取液的缓蚀性能及其与KI的缓蚀协同效应 [J]. 表面技术, 2013, 42(3): 28
10 Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution [J]. Corros. Sci., 2014, 78: 29
11 Liao Q Q, Chen Y Q, Yan A J, et al. The corrosion inhibition of 2-undeeyl-N-carboxymethyl-N-hydroxyethyl imidazoline on carbon steel in citric acid solution [J]. Chin. J. Appl. Chem., 2011, 28: 314
11 廖强强, 陈亚琼, 闫爱军等. 2-十一烷基--羧甲基--羟乙基咪唑啉在柠檬酸溶液中对碳钢的缓蚀作用 [J]. 应用化学, 2011, 28: 314
12 Matheswaran P, Ramasamy A K. Influence of benzotriazole on corrosion inhibition of mild steel in citric acid medium [J]. J. Chem., 2010, 7: 598025
13 Deng S D, Li X H, Du G B. Corrosion inhibition of 2-mercaptopyrimidine for cold rolled steel in citric acid solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 597
13 邓书端, 李向红, 杜官本. 2-巯基嘧啶对冷轧钢在柠檬酸中的缓蚀性能 [J]. 腐蚀科学与防护技术, 2017, 29: 597
14 Matheswaran P, Ramasamy A K. Corrosion inhibition of mild steel in citric acid by aqueous extract of Piper Nigrum L. [J]. J. Chem., 2012, 9: 803098
15 Li X H, Deng S D, Xie X G, et al. Inhibition effect of bamboo leaves’ extract on steel and zinc in citric acid solution [J]. Corros. Sci., 2014, 87: 15
16 Li Z X, Yang L L, Basiti A, et al. Research on the development of walnut industry in China [J]. J. Chin. Agric. Mech., 2013, 34(4): 23
16 李忠新, 杨莉玲, 阿布力孜·巴斯提等. 中国核桃产业发展研究 [J]. 中国农机化学报, 2013, 34(4): 23
17 Li X H, Deng S D, Xu X. Extraction and preparation of walnut green husk inhibitor and its inhibitive action [J]. Fine Chem., 2018, 35: 1825
17 李向红, 邓书端, 徐昕. 核桃青皮缓蚀剂的提取制备及其缓蚀性能 [J]. 精细化工, 2018, 35: 1825
18 Xu X, Li X H, Deng S D. Synergistic inhibition effect of walnut green husk extract and sodium dodecyl sulfate on cold rolled steel in H3PO4 solution [J]. Surf. Technol., 2019, 48(12): 281
18 徐昕, 李向红, 邓书端. 核桃青皮提取物和十二烷基硫酸钠对冷轧钢在H3PO4溶液中的缓蚀协同效应 [J]. 表面技术, 2019, 48(12): 281
19 Hosseini M, Mertens S F L, Arshadi M R. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine [J]. Corros. Sci., 2003, 45: 1473
20 Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
21 Fuchs-Godec R, Doleček V. A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media [J]. Colloids Surf., 2004, 244A: 73
22 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
23 Zhang K, Lu J M, Li J, et al. A novel approach for copper protection: UV light triggered preparation ofthe click-assembled film on copper surface [J]. Chem. Eng. J., 2020, 385: 123406
24 Gewirth A A, Niece B K. Electrochemical applications of in situ scanning probe microscopy [J]. Chem. Rev., 1997, 97: 1129
25 Guo R, Li X F, Zhen J B, et al. Corrosion inhibition performance of thiourea-based rosin imidazoline quaternary ammonium salt for A3 mild steel [J]. Fine Chem., 2017, 34: 326
25 郭睿, 李晓芳, 甄建斌等. 硫脲基松香咪唑啉季铵盐对A3碳钢的缓蚀性能 [J]. 精细化工, 2017, 34: 326
26 Yang Q T, Guo Z K, Li J R, et al. Review on main chemical constituents of walnut green husk [J]. Guangzhou Chem. Ind., 2018, 46(6): 12
26 杨巧婷, 郭兆宽, 李江瑞等. 核桃青皮的主要化学成分研究综述 [J]. 广州化工, 2018, 46(6): 12
[1] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[2] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[3] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[4] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[5] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[6] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[7] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[8] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[9] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[10] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[11] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[12] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[13] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[14] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[15] 宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.