Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 237-243    DOI: 10.11902/1005.4537.2019.060
  研究报告 本期目录 | 过刊浏览 |
CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应
张晨1, 陆原2,3,4, 赵景茂2,3()
1 中国石化销售股份有限公司华南分公司 广州 510620
2 北京化工大学材料科学与工程学院 北京 100029
3 材料电化学过程与技术北京市重点实验室 北京 100029
4 中海油 (天津) 油田化工有限公司 天津 300452
Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution
ZHANG Chen1, LU Yuan2,3,4, ZHAO Jingmao2,3()
1 South China Branch, Sinopec Sales Co. , Ltd. , Guangzhou 510620, China
2 College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3 Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
4 CenerTech Oilfield Chemical Co. , Ltd. , Tianjin 300452, China
全文: PDF(2895 KB)   HTML
摘要: 

采用分子动力学模拟技术对CO2/H2S腐蚀体系中咪唑啉季铵盐 (IAS) 与3种阳离子表面活性剂间的缓蚀协同效应进行了预测,并通过失重法、极化曲线测试、XPS分析等对预测结果进行验证,同时探讨了缓蚀协同机理。结果表明,IAS与十二烷基三甲基溴化铵 (DTAB)、十四烷基三甲基溴化铵 (TTAB) 间存在较好的缓蚀协同效应,所形成的复合缓蚀剂属于以抑制阳极为主的混合型缓蚀剂;XPS分析结果表明,复合缓蚀剂中起主要缓蚀作用的物质可能为IAS,而表面活性剂则起到填补缓蚀剂膜层缺陷的作用,不同复配体系协同效应的差异,可能与缓蚀剂分子的空间位阻有关。

关键词 CO2/H2S腐蚀碳钢缓蚀剂XPS分子动力学模拟自由体积分数    
Abstract

The synergistic inhibition effect of imidazoline ammonium salt (IAS) coupled respectively with three cationic surfactants in H2S/CO2 brine solution was predicted by molecular dynamic simulation technology. The predicted results were verified for Q235 steel in 3.5%NaCl solution by means of mass loss method, potentiodynamic polarization measurement and XPS analysis. Results show that the combination of IAS with dodecyl trimethyl ammonium bromide (DTAB) or tetradecyl trimethyl ammonium bromide (TTAB) all presents good synergistic inhibition effect. The complex corrosion inhibitors are mixed-type inhibitor. From XPS results, it follows that during the corrosion process, the IAS might mainly play the role in the formation of inhibition film on the Q235 steel surface, while the surfactant could mainly fill in the defects of the forming corrosion inhibition film. Possibly, the difference in synergistic inhibition effect for different complex inhibitors may be related to the steric hindrance of inhibitor molecules.

Key wordsCO2/H2S corrosion    carbon steel    corrosion inhibitor    XPS    molecular dynamic simulation    free volume fraction
收稿日期: 2019-05-18     
ZTFLH:  TG174  
通讯作者: 赵景茂     E-mail: jingmaozhao@126.com
Corresponding author: ZHAO Jingmao     E-mail: jingmaozhao@126.com
作者简介: 张晨,男,1989年生,博士生,工程师

引用本文:

张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
Chen ZHANG, Yuan LU, Jingmao ZHAO. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 237-243.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.060      或      https://www.jcscp.org/CN/Y2020/V40/I3/237

图1  IAS与3种阳离子表面活性剂的分子结构式
图2  以H2O、H3O+、Cl-、HCO3-或HS-为探针时不同复合缓蚀剂膜层的FFV值随c%IAS的变化曲线
Inhibitorv / mm·a-1η / %S
Blank0.7174------
5 mg/L IAS0.244365.9---
10 mg/L IAS0.107285.1---
5 mg/L DTAB0.67126.4---
10 mg/L DTAB0.65388.9---
5 mg/L TTAB0.67765.5---
10 mg/L TTAB0.563121.5---
5 mg/L CTAB0.68075.1---
10 mg/L CTAB0.431239.9---
5 mg/L IAS+5 mg/L DTAB0.076589.32.98
5 mg/L IAS+5 mg/L TTAB0.138280.71.67
5 mg/L IAS+5 mg/L CTAB0.381946.80.61
表1  不同缓蚀剂在含CO2/H2S盐水中对Q235钢的缓蚀效果
图3  Q235钢在含有不同缓蚀剂的CO2/H2S共存盐水溶液中测得的极化曲线
Inhibitonβa / mV·dec-1βc / mV·dec-1Ecorrvs SCE / mVIcorr / μA·cm-2ηp / %
Blank56.6-198.4-746.5168.4---
5 mg/L IAS+5 mg/L DTAB58.1-181.7-679.18.295.1
5 mg/L IAS+5 mg/L TTAB54.8-223.6-705.925.285.0
5 mg/L IAS+5 mg/L CTAB55.9-207.9-738.879.952.6
表2  通过拟合Q235钢在含有不同缓蚀剂的CO2/H2S共存盐水溶液中测得的极化曲线得到的电化学参数
图4  Q235钢在含有不同缓蚀剂的CO2/H2S共存盐水溶液中浸泡24 h后测得的XPS全谱
图5  Q235钢在含有不同缓蚀剂的CO2/H2S共存盐水溶液中浸泡24 h后测得的N1s高分辨窄谱
InhibitorPeak Area of N+Peak Area of —N=Percentage of peak area of N+ / %

5 mg/L IAS+

5 mg/L DTAB

735130236.1

5 mg/L IAS+

5 mg/L TTAB

38976033.9

5 mg/L IAS+

5 mg/L CTAB

329116022.1
表3  通过分析Q235钢在含有不同缓蚀剂的CO2/H2S共存盐水溶液中浸泡24 h后测得的N1s高分辨窄谱得到的参数
图6  CO2/H2S共存盐水溶液中IAS与3种表面活性剂在碳钢表面的成膜机理示意图
[1] Li X H, Deng S D, Fu H, et al. Synergism between rare earth cerium (IV) ion and vanillin on the corrosion of cold rolled steel in 1.0 M HCl solution [J]. Corros. Sci., 2008, 50: 3599
doi: 10.1016/j.corsci.2008.09.029
[2] Oguzie E E, Li Y, Wang F H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion [J]. J. Colloid Interface Sci., 2007, 310: 90
doi: 10.1016/j.jcis.2007.01.038
[3] Okafor P C, Liu X, Zheng Y G. Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution [J]. Corros. Sci., 2009, 51: 761
doi: 10.1016/j.corsci.2009.01.017
[4] Qiu L G, Wu Y, Wang Y M, et al. Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid [J]. Corros. Sci., 2008, 50: 576
doi: 10.1016/j.corsci.2007.07.010
[5] Okafor P C, Zheng Y G. Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions [J]. Corros. Sci., 2009, 51: 850
doi: 10.1016/j.corsci.2009.01.027
[6] Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution [J]. Corros. Sci., 2014, 78: 29
doi: 10.1016/j.corsci.2013.08.025
[7] Khamis A, Saleh M M, Awad M I. Synergistic inhibitor effect of cetylpyridinium chloride and other halides on the corrosion of mild steel in 0.5 M H2SO4 [J]. Corros. Sci., 2013, 66: 343
doi: 10.1016/j.corsci.2012.09.040
[8] Zhao J M, Chen G H. The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution [J]. Electrochim. Acta, 2012, 69: 247
doi: 10.1016/j.electacta.2012.02.101
[9] Zhang J, Sun X J, Ren Y M, et al. The synergistic effect between imidazoline-based dissymmetric bis-quaternary ammonium salts and thiourea against CO2 corrosion at high temperature [J]. J. Surfactants Deterg., 2015, 18: 981
doi: 10.1007/s11743-015-1744-0
[10] Zhang C, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and three anionic surfactants in CO2-saturated brine solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 496
[10] (张晨, 赵景茂. CO2饱和盐水溶液中咪唑啉季铵盐与3种阴离子表面活性剂之间的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2015, 35: 496)
doi: 10.11902.1005.4537.2014.157
[11] Zhang C, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and sodium dodecyl sulfate in CO2 system [J]. Acta Phys.-Chim. Sin., 2014, 30: 677
doi: 10.3866/PKU.WHXB201402111
[12] Amin M A, Mohsen Q, Hazzazi O A. Synergistic effect of I- ions on the corrosion inhibition of Al in 1.0 M phosphoric acid solutions by purine [J]. Mater. Chem. Phys., 2009, 114: 908
doi: 10.1016/j.matchemphys.2008.10.057
[13] Li X H, Deng S D, Fu H, et al. Synergistic inhibition effect of rare earth cerium (IV) ion and anionic surfactant on the corrosion of cold rolled steel in H2SO4 solution [J]. Corros. Sci., 2008, 50: 2635
doi: 10.1016/j.corsci.2008.06.026
[14] Obot I B, Obi-Egbedi N O, Umoren S A. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium [J]. Corros. Sci., 2009, 51: 276
doi: 10.1016/j.corsci.2008.11.013
[15] Hao Y S, Sani L A, Ge T J, et al. The synergistic inhibition behaviour of tannic acid and iodide ions on mild steel in H2SO4 solutions [J]. Corros. Sci., 2017, 123: 158
doi: 10.1016/j.corsci.2017.05.001
[16] Musa A Y, Jalgham R T T, Mohamad A B. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl [J]. Corros. Sci., 2012, 56: 176
doi: 10.1016/j.corsci.2011.12.005
[17] Wang D, Xiang B, Liang Y P, et al. Corrosion control of copper in 3.5wt.% NaCl solution by domperidone: Experimental and theoretical study [J]. Corros. Sci., 2014, 85: 77
doi: 10.1016/j.corsci.2014.04.002
[18] Yan Y G, Wang X, Zhang Y, et al. Molecular dynamics simulation of corrosive species diffusion in imidazoline inhibitor films with different alkyl chain length [J]. Corros. Sci., 2013, 73: 123
doi: 10.1016/j.corsci.2013.03.031
[19] Zhang J, Yu W Z, Yu L J, et al. Molecular dynamics simulation of corrosive particle diffusion in benzimidazole inhibitor films [J]. Corros. Sci., 2011, 53: 1331
[20] Qiang Y J, Zhang S T, Guo L, et al. Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid [J]. Corros. Sci., 2017, 119: 68
doi: 10.1016/j.corsci.2017.02.021
[21] Liao L L, Mo S, Luo H Q, et al. Relationship between inhibition performance of melamine derivatives and molecular structure for mild steel in acid solution [J]. Corros. Sci., 2017, 124: 167
doi: 10.1016/j.corsci.2017.05.020
[22] Salarvand Z, Amirnasr M, Talebian M, et al. Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies [J]. Corros. Sci., 2017, 114: 133
doi: 10.1016/j.corsci.2016.11.002
[23] Li X H, Deng S D, Lin T, et al. 2-Mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO3 solution [J]. Corros. Sci., 2017, 118: 202
doi: 10.1016/j.corsci.2017.02.011
[24] Zhang C, Zhao J M. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution [J]. Corros. Sci., 2017, 126: 247
[25] Singh A, Lin Y H, Obot I B, et al. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2 [J]. J. Mol. Liq., 2016, 219: 865
doi: 10.1016/j.molliq.2016.04.048
[26] Ferreira E S, Giacomelli C, Giacomelli F C, et al. Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel [J]. Mater. Chem. Phys., 2004, 83: 129
[27] Yu Z J, Kang E T, Neoh K G. Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers [J]. Polymer, 2002, 43: 4137
doi: 10.1016/S0032-3861(02)00263-X
[28] Xu J, Han X, Liu H L, et al. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant [J]. Colloid. Surf. A, 2006, 273: 179
[29] Weng L T, Poleunis C, Bertrand P, et al. Sizing removal and functionalization of the carbon fiber surface studied by combined TOF SIMS and XPS [J]. J. Adhes. Sci. Technol., 1995, 9: 859
doi: 10.1163/156856195X00743
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[9] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[10] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[11] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[12] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[13] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[15] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.