Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 220-226    DOI: 10.11902/1005.4537.2014.077
  研究报告 本期目录 | 过刊浏览 |
O2浓度对钢在超临界CO2中腐蚀速率的影响
张玉成1,鞠新华1,庞晓露2,高克玮2()
2. 北京科技大学材料物理与化学系 北京 100083
Effect of O2 Concentration on Corrosion Rate of Steels in Supercritical CO2
Yucheng ZHANG1,Xinhua JU1,Xiaolu PANG2,Kewei GAO2()
1. ShouGang Research Institute of Technology, Beijing 100043, China
2. Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1077 KB)   HTML
摘要: 

研究了油气输送管道中常用的两种碳钢C75和X65及3种不锈钢13Cr,2205和904 L在80 ℃,12 MPa含有不同浓度O2的超临界CO2环境中的腐蚀行为。结果表明,当超临界CO2中O2浓度较低时,即使是微量O2 (1.50×10-6),也能显著地加速碳钢和13Cr不锈钢的腐蚀;在O2浓度很高时 (5.70×10-2) 出现钝化现象,与不含O2时相比,无论碳钢还是13Cr不锈钢的腐蚀速率均降低;2205和904 L不锈钢的腐蚀均不受O2浓度的影响。

关键词 超临界CO2O2碳钢不锈钢腐蚀速率    
Abstract

The carbon capture and storage (CCS) in geological reservoirs is now considered to be one of the main options for achieving deep reductions in CO2 emissions. Generally, the purity of captured CO2 is only about 95% and can contain trace gases such as O2, CO, SOx and NOx. In the presence of a water phase, these trace gases can contribute to the corrosiveness of high pressure-high temperature CO2 (supercritical CO2) systems. In this study, corrosion experiments of supercritical CO2 with various amounts of O2 were carried out to study the effect of small concentrations of O2 on the corrosion rate of two kinds of carbon steels C75 and X65 and three kinds of stainless steels 13Cr, 2205 and 904L in aqueous supercritical CO2 at 80 ℃ under 12 MPa. The decay kinetics of small starting O2 concentrations were investigated and used for the experiments with continuous replenishment of used-up O2. The results indicated that constant O2 concentrations in supercritical CO2, even trace of O2 (1.50×10-6), could enhance the corrosion rate of carbon steels tremendously (more than 100 mm/a). Under this condition, even the corrosion rate of 13Cr stainless steel obviously increased. However, surprisingly, with high O2 concentrations seemed to exhibit passivation effect and the corrosion rates for carbon steels and 13Cr stainless steel were relatively low. The 2205 and 904L stainless steels were unaffected by addition of O2 and showed high resistance (<0.01 mm/a) to the aqueous supercritical CO2 corrosion.

Key wordssupercritical CO2    O2    carbon steel    stainless steel    corrosion rate
    
基金资助:北京市自然科学基金重点项目(2131004)资助

引用本文:

张玉成,鞠新华,庞晓露,高克玮. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
Yucheng ZHANG, Xinhua JU, Xiaolu PANG, Kewei GAO. Effect of O2 Concentration on Corrosion Rate of Steels in Supercritical CO2. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 220-226.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.077      或      https://www.jcscp.org/CN/Y2015/V35/I3/220

Steel C Si Mn P S N Cr Mo Ni Cu
C75 0.2~0.4 0.1~0.3 1.0~3.0 ≤0.01 ≤0.01 --- 0.02~0.04 0.01~0.03 0.05~0.07 ---
X65 ≤0.1 0.2~0.4 1.0~3.0 ≤0.02 ≤0.01 ≤0.01 --- --- --- ---
13Cr 0.17~0.22 0.3~0.5 0.2~0.4 ≤0.04 ≤0.04 --- 12.5~13.5 --- --- ---
2205 ≤0.03 ≤1.0 ≤2.0 ≤0.03 ≤0.02 0.08~0.20 21.0~23.0 2.5~3.5 4.5~6.5 ---
904L ≤0.02 ≤0.70 ≤2.0 ≤0.03 ≤0.015 0.04~0.15 19.0~21.0 4.0~5.0 24.0~26.0 1.0~2.0
表1  实验所用材料的化学成分
图1  初始O2浓度分别为1.37×10-3和2.69×10-3时反应釜中O2浓度随腐蚀时间的变化曲线
图2  钢在一次性注入2.69×10-3 O2的超临界CO2中腐蚀后的宏观表面形貌
O2 concentration C75 X65 13Cr 2205 904 L
1.37×10-3 8.1 8.1 0.014 <0.01 <0.01
2.69×10-3 25.0 36.2 0.01 <0.01 <0.01
表2  一次性分别注入1.37×10-3和2.69×10-3 O2时钢在超临界CO2中的腐蚀速率
图3  初始O2浓度为5.7×10-2时反应釜中O2浓度随腐蚀时间的变化曲线
图4  无氧及不同O2含量时碳钢及13Cr不锈钢在超临界CO2中的腐蚀速率
图5  手动动态注入3.50×10-4 O2的过程
图6  恒定O2浓度控制过程
图7  碳钢及13Cr不锈钢在动态注入O2条件下的腐蚀速率
[1] Intergovernmental Panel on Climate Change(IPCC) special report. Carbon dioxide capture and storage: technical summary [R]. Cambridge: Cambridge University Press, 2005: 29
[2] Sass B M, Farzan H, Prabhakar R, et al. Considerations for treating impurities in oxy-combustion flue gas prior to sequestration[J]. Energy Procedia, 2009, 1: 535
[3] Ayello F, Evans K, Thodla R, et al. Effect of impurities on corrosion of steel in supercritical CO2 [A]. Corrosion/2010 [C]. Houston,NACE International, 2010: 10193
[4] Choi Y S, Nesic S. Effect of impurities on the corrosion behaviour of carbon steel in supercritical CO2-water environments [A]. Corrosion/2010 [C]. Houston, NACE International, 2010: 10196
[5] Dugstad A. Mechanism of protective film formation during CO2 corrosion of carbon steel [A]. Corrosion/98 [C]. Houston, NACE International, 1998: 31
[6] Li C F, Zhang Y, Wang B, et al. Advances in the research of CO2 corrosion films in oil and gas production[J]. Corros. Prot., 2005, 26(10): 443 (李春福, 张颖, 王斌等. 油气开发过程中CO2腐蚀产物膜的研究进展[J]. 腐蚀与防护, 2005, 26(10): 443)
[7] Gao M, Pang X, Gao K. The growth mechanism of CO2 corrosion product films[J]. Corros. Sci., 2011, 53(2): 557
[8] Lu M X, Bai Z Q, Zhao X W, et al. Actuality and typical cases for corrosion in the process of extraction, gathering, storage and transmission for oil and gas[J]. Corros. Prot., 2002, 23(3): 105 (路民旭, 白真权, 赵新伟等. 油气采集储运中的腐蚀现状及典型案例[J]. 腐蚀与防护, 2002, 23(3): 105)
[9] Makarenko V D, Shatilo S P, Gumerskii Kh Kh, et al. Effect of oxygen and hydrogen sulfide on carbon dioxide corrosion of welded structures of oil and gas installations[J]. Chem. Pet. Eng., 2000, 36(2): 125
[10] Skaperdas G T, Uhlig H H. Corrosion of steel by dissolved carbon dioxide and oxygen[J]. Ind. Eng. Chem., 1942, 34(6): 748
[11] Lefhoko M. Power station operations millmerran power station feed water dissolved oxygen control [D]. Toowoomba: University of Southern Queensland, 2007
[12] Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J]. Environ. Sci. Technol., 2010, 44(23): 9233
[13] Pfennig A, B??ler R. Effect of CO2 on the stability of steels with 1% and 13% Cr in saline water[J]. Corros. Sci., 2009, 51(4): 931
[14] Chen C F, Lu M X, Zhao G X, et al. Effects of temperature, Cl- concentration and Cr on electrode reactions of CO2 corrosion of N80 steel[J]. Acta. Metall. Sin., 2003, 39(8): 848 (陈长风, 路民旭, 赵国仙等. 温度、Cl-浓度、Cr元素对N80钢CO2腐蚀电极过程的影响[J]. 金属学报, 2003, 39(8): 848)
[15] Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and Cr steels. In: Advances in CO2 Corrosion [M]. Hausler R H and Giddard H P, eds. Houston, NACE, Vol. 1, 1984: 39
[16] Chen C F, Lu M X, Zhao G X, et al. Characters of CO2 corrosion scales on well tube steels N80[J]. Acta. Metall. Sin., 2002, 22(4): 411 (陈长风, 路民旭, 赵国仙等. N80油套管钢CO2腐蚀产物膜特征[J]. 金属学报, 2002, 22(4): 411)
[17] Fresel F G. Effect of oxygen on the corrosion of steels[J]. Ind. Eng. Chem., 1938, 30(1): 83
[18] Cox G L, Roethelli B E. Effect of oxygen concentration on corrosion rates of steel and composition of corrosion products formed in oxygenated water[J]. Ind. Eng. Chem., 1931, 23(9): 1012
[19] Finnegan T J, Corey R C, Jacobus D D. Corrosion of steel - quantitative effect of dissolved oxygen and carbon dioxide[J]. Ind. Eng. Chem., 1935, 27(7): 774
[20] Kuang W J, Wu X Q, Han E-H, et al. The mechanism of oxide film formation on alloy 690 in oxygenated high temperature water[J]. Corros. Sci., 2011, 53(11): 3853
[21] Kocijan A, Donik C, Jenko M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions[J]. Corros. Sci., 2007, 49: 2083
[22] Castle J E, Qiu J H. Ion selectivity in the passivation of a Ni bearing steel[J]. Corros. Sci., 1990, 30: 429
[23] Nesic S. Key issues related to modelling of internal corrosion of oil and gas pipelines-a review[J]. Corros. Sci., 2007, 49(12): 4308
[24] Nesic S, Nordsveen M, Nyborg R, et al. A mechanistic model for CO2 corrosion of mild steel in the presence of protective iron carbonate scales- Part II: A numerical experiment[J]. Corrosion, 2003 59(6): 489
null
[25] Nesic S, Solvi G T, Enerhaug J. Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide corrosion[J]. Corrosion, 1995, 51(10): 773
[26] Uhlig H H, Triadis D N, Stern M. Effect of oxygen, chlorides and calcium ion on corrosion inhibitor of iron by polyphosphates[J]. J. Electrochem. Soc., 1955, 102: 59
[27] Frese F G. Effect of oxygen on the corrosion of steels[J]. Ind. Eng. Chem., 1938, 30: 83
[1] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[2] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[3] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[4] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[5] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[6] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[13] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[14] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[15] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.