Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 233-240    DOI: 10.11902/1005.4537.2020.049
  研究报告 本期目录 | 过刊浏览 |
温度对X70钢在含CO2地层水中腐蚀行为影响
明男希, 王岐山, 何川, 郑平, 陈旭()
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water
MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu()
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(7973 KB)   HTML
摘要: 

利用高温高压反应釜,采用失重、SEM、XRD、EDS和电化学方法研究了不同温度下X70管线钢在含CO2地层水中的腐蚀行为。讨论了X70钢CO2腐蚀机理的热力学和动力学机制。结果表明:温度通过影响FeCO3过饱和度、晶粒形核率和长大速率,进而影响X70钢腐蚀速率。在温度为30 ℃时,FeCO3的过饱和度较小,不能在X70钢表面连续析出,难以形成保护性产物膜,X70钢腐蚀速率较高。温度为60~90 ℃时,FeCO3的形核速率大于生长速率,X70钢表面形成致密的FeCO3膜,腐蚀速率开始下降。继续升温至120和150 ℃,FeCO3的形核速率小于生长速率,X70钢表面不能形成完整的具有保护性的FeCO3膜,或膜内应力增大导致膜破裂。FeCO3膜与基体金属形成电偶电池,发生局部腐蚀。

关键词 X70管线钢地层水温度CO2腐蚀过饱和度形核速率    
Abstract

The corrosion behaviour of X70 pipeline steel in an artificial CO2-containing formation water at various temperatures was studied in a high-temperature, high-pressure reaction kettle via mass loss measurements, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometer, and electrochemical methods. Thermodynamic and kinetic factors related to the CO2 corrosion mechanism of X70 steel were assessed. The results show that the temperature influenced the corrosion rate of X70 steel by affecting the supersaturation, nucleation rate, and grain growth rate of FeCO3. The corrosion product scale could not form on the surface of X70 steel at 30 ℃ because of the lower FeCO3 supersaturation. A dense FeCO3 scale formed at 60 and 90 ℃, resulting in a decrease in the corrosion rate. When the temperature was higher than 120 ℃, the nucleation rate of FeCO3 was less than its growth rate, consequently, a complete protective FeCO3 scale could not form on the X70 steel surface, while the stress accumulation inside the scale led to the rupture of the scale, which may be the cause leading to the formation of a galvanic cell consisting of the FeCO3 film and matrix metal, which resulted in local corrosion.

Key wordsX70 pipeline steel    formation water    temperature    CO2 corrosion    supersaturation    nucleation rate
收稿日期: 2020-01-08     
ZTFLH:  TG174  
基金资助:教育部“春晖”国际合作计划项目和辽宁省教育厅重点;项目(L2017LZD004)
通讯作者: 陈旭     E-mail: cx0402@sina.com
Corresponding author: CHEN Xu     E-mail: cx0402@sina.com
作者简介: 明男希,男,1995年生,硕士生

引用本文:

明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
Nanxi MING, Qishan WANG, Chuan HE, Ping ZHENG, Xu CHEN. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 233-240.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.049      或      https://www.jcscp.org/CN/Y2021/V41/I2/233

图1  X70钢的显微组织
图2  X70钢在不同温度含CO2地层水中腐蚀速率
图3  X70钢在不同温度含CO2地层水中腐蚀产物的XRD谱
图4  X70钢在不同温度含CO2地层水中的SEM像和EDS结果
图5  X70钢在不同温度含CO2地层水中去除腐蚀产物后的SEM像
图6  X70钢在不同温度含CO2地层水中动电位极化曲线
图7  X70钢在不同温度含CO2地层水中电化学阻抗谱
图8  不同温度下X70钢电化学阻抗谱等效电路

Temperature

Rs

Ω·cm2

Qf

F·cm-2

n1

Rf

Ω·cm2

Qdl

F·cm-2

n2

Rct

Ω·cm2

303.940.0150.969.710.150.729.27
604.350.010119.160.0460.5188.17
9013.027.23×10-40.3420.425.6×10-50.783179
12014.731.25×10-30.5130.658.6×10-41240
1501.204.15×10-317.010.0180.956.78
表1  不同温度下X70钢电化学阻抗图谱拟合结果
1 Javidi M, Chamanfar R, Bekhrad S. Investigation on the efficiency of corrosion inhibitor in CO2 corrosion of carbon steel in the presence of iron carbonate scale [J]. J. Nat. Gas Sci. Eng., 2019, 61: 197
2 Mansoori H, Young D, Brown B, et al. Influence of calcium and magnesium ions on CO2 corrosion of carbon steel in oil and gas production systems-a review [J]. J. Nat. Gas Sci. Eng., 2018, 59: 287
3 Xu B H, Yuan B, Wang Y Q, et al. H2S-CO2 mixture corrosion-resistant Fe2O3-amended wellbore cement for sour gas storage and production wells [J]. Constr. Build. Mater., 2018, 188: 161
4 Abbas M H, Norman R, Charles A. Neural network modelling of high pressure CO2 corrosion in pipeline steels [J]. Proc. Saf. Environ. Prot., 2018, 119: 36
5 He W, Knudsen O O, Diplas S. Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl- [J]. Corros. Sci., 2009, 51: 2811
6 Liu Z G, Gao X H, Du L X, et al. Comparison of corrosion behaviour of low-alloy pipeline steel exposed to H2S/CO2-saturated brine and vapour-saturated H2S/CO2 environments [J]. Electrochim. Acta, 2017, 232: 528
7 Qiu Z C, Xiong C M, Chang Z L, et al. Major corrosion factors in the CO2 and H2S coexistent environment and the relative anti-corrosion method: Taking Tazhong I gas field, Tarim Basin, as an example [J]. Petrol. Explor. Dev., 2012, 39: 256
8 Zhang Q H, Hou B S, Xu N, et al. Two novel thiadiazole derivatives as highly efficient inhibitors for the corrosion of mild steel in the CO2-saturated oilfield produced water [J]. J. Taiwan Inst. Chem. Eng., 2019, 96: 588
9 Li C F, Wang B, Zhang Y, et al. Research progress of CO2 corrosion in oil/gas field exploitation [J]. J. Southwest Petrol. Inst., 2004, 26(2): 42
9 李春福, 王斌, 张颖等. 油气田开发中CO2腐蚀研究进展 [J]. 西南石油学院学报, 2004, 26(2): 42
10 Hu X M, Neville A. CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions-A systematic approach [J]. Wear, 2009, 267: 2027
11 Liu Q Y, Mao L J, Zhou S W. Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments [J]. Corros. Sci., 2014, 84: 165
12 Liu Y C, Zhang B, Zhang Y L, et al. Electrochemical polarization study on crude oil pipeline corrosion by the produced water with high salinity [J]. Eng. Fail. Anal., 2016, 60: 307
13 Zhou P, Liang J M, Zhang F, et al. Influence of chromium on corrosion behavior of low-alloy steel in cargo oil tank O2-CO2-SO2-H2S wet gas environment [J]. J. Iron Steel Res. Int., 2015, 22: 630
14 Yaro A S, Abdul-Khalik K R, Khadom A A. Effect of CO2 corrosion behavior of mild steel in oilfield produced water [J]. J. Loss Prev. Process Ind., 2015, 38: 24
15 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49: 4308
16 Tavares L M, da Costa E M, da Oliveira Andrade J J, et al. Effect of calcium carbonate on low carbon steel corrosion behavior in saline CO2 high pressure environments [J]. Appl. Surf. Sci., 2015, 359: 143
17 Han J B, Young D, Colijn H, et al. Chemistry and structure of the passive film on mild steel in CO2 corrosion environments [J]. Ind. Eng. Chem. Res., 2009, 48: 6296
18 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-Part 1: theory and verification [J]. Corrosion, 2003, 59: 443
19 Cai Y D, Guo P C, Liu D M, et al. Comparative study on CO2 corrosion behavior of N80, P110, X52 and 13Cr pipe lines in simulated stratum water [J]. Sci. China Technol. Sci., 2010, 53: 2342
20 Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water [J]. Electrochim. Acta, 2011, 56: 1676
21 Crolet J L, Thevenot N, Nesic S. Role of conductive corrosion products in the protectiveness of corrosion layers [J]. Corrosion, 1998, 54: 194
22 Lin G F, Bai Z Q, Zhao X W, et al. Effect of temperature on scales of carbon dioxide corrosion products [J]. Acta Petro. Sin., 2004, 25(3): 101
22 林冠发, 白真权, 赵新伟等. 温度对二氧化碳腐蚀产物膜形貌特征的影响 [J]. 石油学报, 2004, 25(3): 101
23 Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
24 Li Y, Chen M D, Li J K, et al. Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2 [J]. Int. J. Min. Met. Mater., 2018, 25: 779
25 Liu Z G, Gao X H, Du L X, et al. Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions [J]. Mater. Corros., 2018, 69: 1180
26 Liu Z G, Gao X H, Du L X, et al. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe [J]. Appl. Surf. Sci., 2018, 440: 974
27 Olvera-Martínez M E, Mendoza-Flores J, Rodríguez‐Gómez F J, et al. Assessment of the effects of acetic acid and turbulent flow conditions on the corrosion of API 5L X52 steel in aqueous CO2 solutions [J]. Mater. Corros., 2018, 69: 376
28 Gao M, Pang X, Gao K. The growth mechanism of CO2 corrosion product films [J]. Corros. Sci., 2011, 53: 557
29 Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
30 Zhao X Y, Chen X, Wang X. Effect of aging processes on corrosion behavior and stress corrosion sensitivity of pre-stretched 7075 aluminum alloy [J]. Mater. Corros., 2018, 69: 850
31 Lin X Q, Liu W, Wu F, et al. Effect of O2 on corrosion of 3Cr steel in high temperature and high pressure CO2-O2 environment [J]. Appl. Surf. Sci., 2015, 329: 104
32 Cui Z D, Wu S L, Zhu S L, et al. Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO2 [J]. Appl. Surf. Sci., 2006, 252: 2368
33 López D A, Schreiner W H, de Sánchez S R, et al. The influence of carbon steel microstructure on corrosion layers: An XPS and SEM characterization [J]. Appl. Surf. Sci., 2003, 207: 69
34 Li Y. Corrosion behavior of N80 and 3Cr steel in oil and gas field environment [J]. Corros. Prot., 2016, 37: 494
34 李勇. 油气田腐蚀环境中N80钢和3Cr钢的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 494
35 Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems [J]. Corros. Sci., 2016, 111: 637
36 Li X P, Zhao Y, Qi W L, et al. Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel [J]. Appl. Surf. Sci., 2019, 469: 146
37 Sun W, Nešić S, Woollam R C. The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit [J]. Corros. Sci., 2009, 51: 1273
38 Daniels E, Alberty R A. Physical Chemistry [M]. 3rd Ed. New York: John Wiley & Sons Inc, 1996
39 Zhou Q, Zhang J X, Jia J G, et al. Corrosion behavior of steel X70 in acid solution of carbon dioxide at high temperature and under high pressure [J]. J. Lanzhou Univ. Technol., 2008, 34(2): 15
39 周琦, 张俊喜, 贾建刚等. X70钢在高温高压二氧化碳酸性溶液中的腐蚀行为 [J]. 兰州理工大学学报, 2008, 34(2): 15
40 Angell P, Luo J S, White D C. Microbially sustained pitting corrosion of 304 stainless steel in anaerobic seawater [J]. Corros. Sci., 1995, 37: 1085.
41 Zhang G A, Lu M X, Wu M S. Formation mechanism of corrosion scales of carbon steel by CO2 corrosion under high temperature and high pressure [J]. J. Univ. Sci. Technol. Beijing, 2007, 29: 1216
41 张国安, 路民旭, 吴荫顺. 碳钢高温高压CO2腐蚀产物膜的形成机制 [J]. 北京科技大学学报, 2007, 29: 1216
[1] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[2] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[6] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[7] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[11] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[12] 逄旭光, 刘润青, 王文涛, 史艳华, 李飞, 梁平. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.
[13] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[14] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[15] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.