Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 309-316    DOI: 10.11902/1005.4537.2019.095
  研究报告 本期目录 | 过刊浏览 |
20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究
贺三1(), 孙银娟2, 张志浩2, 成杰2, 邱云鹏1, 高超洋1
1.西南石油大学石油与天然气工程学院 成都 610500
2.西安长庆科技工程有限责任公司 西安 710000
Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2
HE San1(), SUN Yinjuan2, ZHANG Zhihao2, CHENG Jie2, QIU Yunpeng1, GAO Chaoyang1
1. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
2. Xi'an Changqing Technology Engineering Co. Ltd. , Xi'an 710000, China
全文: PDF(5572 KB)   HTML
摘要: 

利用腐蚀失重实验研究了20#钢在含饱和CO2的离子液体醇胺混合溶液中的腐蚀行为,并结合SEM和EDS等技术研究了腐蚀产物膜及金属表面的形态。利用EIS拟合等效电路分析了电极表面状态,利用动电位扫描法分析了钝化区的钝化规律。结果表明,单乙醇胺 (MEA) 易与CO2发生降解反应,生成的降解产物在实验条件下会导致极严重均匀腐蚀;添加[Bmim]BF4离子液体后,对20#钢的腐蚀有抑制作用,使得均匀腐蚀速率减小;但由于混合溶液中BF4-的存在,使得钝化区范围变窄,从而诱发20#钢产生点蚀。

关键词 CO2捕集20#钢MEA溶液[Bmim]BF4均匀腐蚀点蚀    
Abstract

The corrosion behavior of 20# steel in CO2 saturated mixture liquor of alkanolamine solution with ionic liquid ([Bmim]BF4) was studied by means of weight loss measurement, electrochemical impedance spectroscopy (EIS) and SEM equipped with EDS. The results showed that monoethanolamine (MEA) was easy to degrade with CO2, and the formed degradation products would lead to severe corrosion of 20# steel in experimental conditions. When the [Bmim]BF4 was added, the corrosion of 20# steel was inhibited and hence its uniform corrosion rate was reduced. Besides, due to the existence of BF4- in [Bmim]BF4, the range of passivation zone is narrowed, which is an important cause for pitting corrosion of 20# steel.

Key wordsCO2 capture    20# steel    MEA solution    [Bmim]BF4    uniform corrosion    pitting corrosion
收稿日期: 2019-06-28     
ZTFLH:  TG174  
基金资助:国家科技重大专项(2016ZX05016-003)
通讯作者: 贺三     E-mail: hesan@126.com
Corresponding author: HE San     E-mail: hesan@126.com
作者简介: 贺三,男,1975年生,博士

引用本文:

贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
San HE, Yinjuan SUN, Zhihao ZHANG, Jie CHENG, Yunpeng QIU, Chaoyang GAO. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 309-316.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.095      或      https://www.jcscp.org/CN/Y2020/V40/I4/309

Mass of mixed solution / g[Bmim]BF4gMass fraction of [Bmim]BF4 / %[Bmim]BF4molNaBF4gMass fraction of NaBF4 / %NaBF4mol
300155.00.06637.28762.43%0.0663
3003010.00.132714.57524.86%0.1327
3006020.00.265429.15059.72%0.2654
表1  NaBF4的添加量
图1  不同温度条件下均匀腐蚀速率随[Bmim]BF4浓度变化曲线
图2  30%MEA+不同浓度的[Bmim]BF4条件下20#钢腐蚀产物膜微观形貌
图3  20#钢在添加不同浓度[Bmim]BF4的30%MEA混合溶液中浸泡后去除腐蚀产物膜的表面形貌
图4  20#钢在含不同浓度[Bmim]BF4的混合溶液中外层腐蚀产物膜的EDS分析结果
Corcentration of [Bmim]BF4 / %Mass fraction %Atomic fraction %
081.5949.90
593.4877.28
1090.5670.31
2095.4083.51
表2  Fe的EDS分析结果
图5  不同温度下极化曲线随MEA和[Bmim]BF4浓度的变化规律
图6  20#碳钢在含相同摩尔质量BF4-溶液中的极化曲线对比图
图7  20#钢在含不同浓度[Bmim]BF4的混合溶液中浸泡0.5 h后不同温度条件下的EIS曲线
图8  20#钢在混合溶液中浸泡0.5 h后电化学阻抗谱等效电路
Temperature / ℃Mass fraction of [Bmim]BF4 / %Rs / Ω·cm2CPE1-T / Ω-1·cm-2·s-1CPE1-PRp / Ω·cm2Rt / Ω·cm2CPE2-T / Ω-1·cm-2·s-1
3003.5564.38×10-40.78328450.80------
54.1064.17×10-40.79523---563.82.1548×10-2
104.8003.18×10-40.77613---11017.0330×10-3
205.2893.66×10-40.86637---15138.0210×10-3
7002.3298.22×10-40.7655380.93------
52.4756.05×10-40.76703---88.315.4759×10-1
102.5336.34×10-40.75338---94.371.6909×10-1
202.7696.61×10-40.76547---135.76.7300×10-1
表3  20#钢在30和70 ℃下含不同浓度[Bmim]BF4的混合溶液中浸泡0.5 h后阻抗拟合参数
[1] Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
doi: 10.1016/j.ijggc.2010.11.008
[2] Gale J, Davison J. Transmission of CO2-safety and economic considerations [A]. Greenhouse Gas Control Technologies-6th International Conference [C]. Kyoto, Japan, 2003: 517
[3] Osagie E, Biliyok C, Di Lorenzo G, et al. Techno-economic evaluation of the 2-amino-2-methyl-1-propanol (AMP) process for CO2 capture from natural gas combined cycle power plant [J]. Int. J. Greenhouse Gas Control, 2018, 70: 45
doi: 10.1016/j.ijggc.2018.01.010
[4] Bougie F, Pokras D, Fan X F. Novel non-aqueous MEA solutions for CO2 capture [J]. Int. J. Greenhouse Gas Control, 2019, 86: 34
doi: 10.1016/j.ijggc.2019.04.013
[5] Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review [J]. Chem. Eng. Res. Des., 2011, 89: 1609
doi: 10.1016/j.cherd.2010.11.005
[6] Brennecke J F, Gurkan B E. Ionic liquids for CO2 capture and emission reduction [J]. J. Phys. Chem. Lett., 2010, 1: 3459
doi: 10.1021/jz1014828
[7] Ma T, Wang J X, Du Z Z, et al. A process simulation study of CO2 capture by ionic liquids [J]. Int. J. Greenhouse Gas Control, 2017, 58: 223
[8] Ye Y S, Elabd Y A. Relative chemical stability of imidazolium-based alkaline anion exchange polymerized ionic liquids [J]. Macromolecules, 2011, 44: 8494
doi: 10.1021/ma201864u
[9] Cassity C G, Mirjafari A, Mobarrez N, et al. Ionic liquids of superior thermal stability [J]. Chem. Commun., 2013, 49: 7590
doi: 10.1039/c3cc44118k
[10] Camper D, Bara J E, Gin D L, et al. Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2 [J]. Ind. Eng. Chem. Res., 2008, 47: 8496
doi: 10.1021/ie801002m
[11] Feng Z, Ma J W, Zheng Z, et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions [J]. Chem. Eng. J., 2012, 181/182: 222
[12] Xiao M, Liu H L, Gao H X, et al. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine [J]. Appl. Energy, 2019, 235: 311
doi: 10.1016/j.apenergy.2018.10.103
[13] Akinola T E, Oko E, Wang M H. Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation [J]. Fuel, 2019, 236: 135
doi: 10.1016/j.fuel.2018.08.152
[14] Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions [J]. Ind. Eng. Chem. Res., 1999, 38: 3917
doi: 10.1021/ie9901630
[15] He S, Gao C Y, Zhang L. Research progress on corrosion of carbon steel during process of capture CO2 with monoethanolamine solution [J]. Corros. Sci. Prot. Technol., 2018, 30: 454
[15] (贺三, 高超洋, 张岭. MEA捕集CO2腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 454)
doi: 10.11903/1002.6495.2017.226
[16] Bello A, Idem R O. Pathways for the formation of products of the oxidative degradation of CO2-loaded concentrated aqueous monoethanolamine solutions during CO2 absorption from flue gases [J]. Ind. Eng. Chem. Res., 2005, 44: 945
doi: 10.1021/ie049329+
[17] Saiwan C, Supap T, Idem R O, et al. Part 3: Corrosion and prevention in post-combustion CO2 capture systems [J]. Carbon Manag., 2011, 2: 659
doi: 10.4155/CMT.11.63
[18] DuPart M, Bacon T, Edwards D. Understanding corrosion in alkanolamine gas treating plants: Part 1 [J]. Hydrocarb. Process., 1993, 72: 75
[19] Tanthapanichakoon W, Veawab A, McGarvey B. Electrochemical investigation on the effect of heat-stable salts on corrosion in CO2 capture plants using aqueous solution of MEA [J]. Ind. Eng. Chem. Res., 2006, 45: 2586
[20] Fytianos G, Grimstvedt A, Knuutila H, et al. Effect of MEA's degradation products on corrosion at CO2 capture plants [J]. Energy Proced., 2014, 63: 1869
[21] Hasib-Ur-Rahman M, Larachi F. Prospects of using room-temperature ionic liquids as corrosion inhibitors in aqueous ethanolamine-based CO2 capture solvents [J]. Ind. Eng. Chem. Res., 2013, 52: 17682
doi: 10.1021/ie401816w
[22] Wu K X, Zhou X B, Wu X M, et al. Understanding the corrosion behavior of carbon steel in amino-functionalized ionic liquids for CO2 capture assisted by weight loss and electrochemical techniques [J]. Int. J. Greenhouse Gas Control, 2019, 83: 216
[23] Tseng C H, Chang J K, Chen J R, et al. Corrosion behaviors of materials in aluminum chloride-1-ethyl-3-methylimidazolium chloride ionic liquid [J]. Electrochem. Commun., 2010, 12: 1091
doi: 10.1016/j.elecom.2010.05.036
[24] Lin P C, Sun I W, Chang J K, et al. Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid [J]. Corros. Sci., 2011, 53: 4318
doi: 10.1016/j.corsci.2011.08.047
[25] Perissi I, Bardi U, Caporali S, et al. High temperature corrosion properties of ionic liquids [J]. Corros. Sci., 2006, 48: 2349
doi: 10.1016/j.corsci.2006.06.010
[26] Perissi I, Bardi U, Caporali S, et al. Ionic liquids as diathermic fluids for solar trough collectors’ technology: A corrosion study [J]. Sol. Energy Mater. Sol. Cells, 2008, 92: 510
doi: 10.1016/j.solmat.2007.11.007
[27] Shkurankov A, El Abedin S Z, Endres F. AFM-assisted investigation of the corrosion behaviour of magnesium and AZ91 alloys in an ionic liquid with varying water content [J]. Aust. J. Chem., 2007, 60: 35
doi: 10.1071/CH06305
[28] NACE. RP0775-2005 Preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations [S]. Houston, TX: NACE International Publication, Item, 2005
[29] Fytianos G, Ucar S, Grimstvedt A, et al. Corrosion evaluation of MEA solutions by SEM-EDS, ICP-MS and XRD [J]. Energy Proced., 2016, 86: 197
doi: 10.1016/j.egypro.2016.01.020
[30] Xiang Y, Yan M C, Choi Y S, et al. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process [J]. Int. J. Greenhouse Gas Control, 2014, 30: 125
[31] Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd Ed. Beijing: Chemical Industry Press, 2004
[31] (曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004)
[32] Atilhan M, Jacquemin J, Rooney D, et al. Viscous behavior of imidazolium-based ionic liquids [J]. Ind. Eng. Chem. Res., 2013, 52: 16774
doi: 10.1021/ie403065u
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[7] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[8] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[9] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[10] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[11] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[12] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[13] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[14] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.