|
|
Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 |
姜伯晨1, 曹将栋1,2( ), 曹雪玉1, 王建涛1, 张少朋3 |
1.江苏航运职业技术学院 智能制造与信息学院 南通 226000 2.江苏天舒电器有限公司 南通 226000 3.江苏大学材料学院 镇江 212013 |
|
Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS |
JIANG Bochen1, CAO Jiangdong1,2( ), CAO Xueyu1, WANG Jiantao1, ZHANG Shaopeng3 |
1.School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226000, China 2.Jiangsu Tianshu Electric Co. , Ltd. , Nantong 226000, China 3.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China |
引用本文:
姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
Bochen JIANG,
Jiangdong CAO,
Xueyu CAO,
Jiantao WANG,
Shaopeng ZHANG.
Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 263-270.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.023
或
https://www.jcscp.org/CN/Y2021/V41/I2/263
|
1 |
Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings [J]. Ann. Rev. Mater. Sci., 2003, 33: 383
|
2 |
Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
|
3 |
Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
|
3 |
余春堂, 阳颖飞, 鲍泽斌等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
|
4 |
Miller R A. Thermal barrier coatings for aircraft engines: History and directions [J]. J. Therm. Spray Technol., 1997, 6: 35
|
5 |
Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2010, 83: 2023
|
6 |
Michel D, Jorba M P Y, Collongues R. Study by Raman spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures [J]. J. Raman Spectrosc., 2010, 5: 163
|
7 |
Hua Y Q, Jiang B C, Chen R F, et al. Enhanced physical properties of TiSi2 doped Gd2Zr2O7 ceramic for thermal barrier coatings [J]. Mater. Res. Express, 2019, 6: 056547
|
8 |
Wu J, Wei X Z, Padture N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications [J]. J. Am. Ceram. Soc., 2002, 85: 3031
|
9 |
Mahade S, Curry N, Björklund S, et al. Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray [J]. J. Therm. Spray Technol., 2017, 26: 108
|
10 |
Xiang J Y, Chen S H, Huang J H, et al. Phase structure and thermophysical properties of co-doped La2Zr2O7 ceramics for thermal barrier coatings [J]. Ceram. Int., 2012, 38: 3607
|
11 |
Kang Y X, Bai Y, Fan W, et al. Thermal cycling performance of La2Ce2O7/50vol.% YSZ composite thermal barrier coating with CMAS corrosion [J]. J. Eur. Ceram. Soc., 2018, 38: 2851
|
12 |
Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
|
13 |
Chen C, Liang Y F, Liang T Q, et al. Research progress on hot corrosion of rare earth oxides Co-doped ZrO2 ceramic coatings in molten Na2SO4+NaVO3 salts [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 291
|
13 |
陈超, 梁艳芬, 梁天权等. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 291
|
14 |
Zhang S P, Hua Y Q, Shuai W W, et al. Thermophysical properties of Gd2(CexZr1-x)2O7 ceramic materials [J]. J. Ceram., 2019, 49: 301
|
14 |
张少朋, 花银群, 帅文文等. Gd2(CexZr1-x)2O7陶瓷材料的热物理性能研究 [J]. 陶瓷学报, 2019, 49: 301
|
15 |
Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
|
16 |
Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
|
17 |
Poerschke D L, Levi C G. Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS [J]. J. Eur. Ceram. Soc., 2015, 35: 681
|
18 |
Zhou X, Zou B L, He L M, et al. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures [J]. Corros. Sci., 2015, 100: 566
|
19 |
Drexler J M, Chen C H, Gledhill A D, et al. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass [J]. Surf. Coat. Technol., 2012, 206: 3911
|
20 |
Drexler J M, Ortiz A L, Padture N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass [J]. Acta Mater., 2012, 60: 5437
|
21 |
Deng W Z, Fergus J W. Effect of CMAS composition on hot corrosion behavior of gadolinium zirconate thermal barrier coating materials [J]. J. Electrochem. Soc., 2017, 164: C526
|
22 |
Zhou H M, Yi D Q, Yu Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings [J]. J. Alloy. Compd., 2007, 438: 217
|
23 |
Zhong X H, Zhao H Y, Zhou X M, et al. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating [J]. J. Alloy. Compd., 2014, 593: 50
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|