Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 263-270    DOI: 10.11902/1005.4537.2020.023
  研究报告 本期目录 | 过刊浏览 |
Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究
姜伯晨1, 曹将栋1,2(), 曹雪玉1, 王建涛1, 张少朋3
1.江苏航运职业技术学院 智能制造与信息学院 南通 226000
2.江苏天舒电器有限公司 南通 226000
3.江苏大学材料学院 镇江 212013
Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS
JIANG Bochen1, CAO Jiangdong1,2(), CAO Xueyu1, WANG Jiantao1, ZHANG Shaopeng3
1.School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226000, China
2.Jiangsu Tianshu Electric Co. , Ltd. , Nantong 226000, China
3.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
全文: PDF(20814 KB)   HTML
摘要: 

在1250 ℃的温度下对Gd2(Zr1-xCex)2O7 (x=0,0.1,0.2,0.3) 陶瓷分别进行了5、10和20 h不同腐蚀时间的CMAS热腐蚀实验,利用XRD、SEM及EDS等表征手段对腐蚀过程中元素的扩散、物相和形貌的变化进行了研究。结果表明,CMAS与Gd2 (Zr1-xCex)2O7(x=0,0.1,0.2,0.3) 陶瓷在不同的腐蚀时间段内都会生成以萤石Ca0.2(ZrxCe1-x)0.8O1.8和磷灰石Ca2 (GdxCe1-x)8(SiO4)6O6-4x为主的反应层腐蚀产物。Ce4+的掺杂含量越多,反应层的厚度越薄,而Gd2(Zr0.7Ce0.3)2O7在任一腐蚀时间段其反应层厚度都是最薄的,相比较而言其抗CMAS热腐蚀性能是最好的。Ce4+的掺杂加快了CMAS与陶瓷的反应速率,从而快速形成致密的反应层阻止CMAS向陶瓷层内部的侵蚀并且提高了陶瓷的应变容限。

关键词 CMAS热腐蚀CeO2Gd2Zr2O7陶瓷掺杂    
Abstract

Artificial particulates of calcium magnesium aluminum silicate (CMAS) induced hot-corrosion of Gd2(Zr1-xCex)2O7 (x=0, 0.1, 0.2, 0.3) ceramics at 1250 ℃ for 5, 10 and 20 h in lab atmosphere. Was assessed by means of XRD, SEM and EDS. The results show that the reaction of CMAS and Gd2(Zr1-xCex)2O7 (x=0, 0.1, 0.2, 0.3) ceramics will generate the corrosion products composed mainly of fluorite Ca0.2(ZrxCe1-x) 0.8O1.8 and apatite Ca2(GdxCe1-x)8(SiO4)6O6-4x. The more Ce4+ doping content, the thinner the reaction layer, and GZ7C3 has the thinnest reaction layer thickness for any corrosion time period, thereby, its resistance to CMAS induced hot-corrosion is the best. The doping of Ce4+ accelerates the reaction rate between CMAS and ceramics, thereby quickly forming a dense reaction layer to prevent the CMAS from inward corrosion and increase the strain tolerance of the ceramic.

Key wordsCMAS hot corrosion    CeO2    Gd2Zr2O7 ceramics    doping
收稿日期: 2020-02-26     
ZTFLH:  TG174  
基金资助:江苏省自然科学基金(BK20191204);江苏省高校自然科学基金(19KJB430031);南通市科技计划项目(GY12018032);江苏航运职业技术学院院级课题(HYKY/2020A02)
通讯作者: 曹将栋     E-mail: caojd@jssc.edu.cn
Corresponding author: CAO Jiangdong     E-mail: caojd@jssc.edu.cn
作者简介: 姜伯晨,男,1993年生,硕士

引用本文:

姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
Bochen JIANG, Jiangdong CAO, Xueyu CAO, Jiantao WANG, Shaopeng ZHANG. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 263-270.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.023      或      https://www.jcscp.org/CN/Y2021/V41/I2/263

图1  Gd2(Zr1-xCex)2O7(x=0,0.1,0.2,0.3) 陶瓷块材XRD谱
图2  1250 ℃,20 h CMAS热腐蚀后的Gd2(Zr1-xCex)2O7(x=0,0.1,0.2,0.3) 陶瓷XRD谱
图3  Gd2(Zr1-xCex)2O7(x=0,0.1,0.2,0.3) 陶瓷于1250 ℃下CMAS腐蚀5 h的截面形貌
图4  Gd2(Zr1-xCex)2O7(x=0,0.1,0.2,0.3) 陶瓷于1250 ℃下CMAS腐蚀10 h的截面形貌
图5  Gd2(Zr1-xCex)2O7(x=0,0.1,0.2,0.3) 陶瓷于1250 ℃下CMAS腐蚀20 h的截面形貌
图6  GZ 和GZ7C3腐蚀10 h后的腐蚀产物
PointConstituentCaMgAlSiGdZrO
1Rod-liked crystal7.750.060.0219.8825.410.9445.94
2Bulk-liked crystal7.50.540.422.368.4434.843.94
表1  GZ和GZ7C3腐蚀10 h后产物的EDS测试结果
图7  GZ和 GZ7C3腐蚀5 h后的Ca和Si截面分布图
图8  Gd2(Zr1-xCex)2O7(x=0,0.1,0.2,0.3) 陶瓷在1250 ℃下CMAS腐蚀5、10和20 h的反应层厚度图
1 Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings [J]. Ann. Rev. Mater. Sci., 2003, 33: 383
2 Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
3 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
3 余春堂, 阳颖飞, 鲍泽斌等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
4 Miller R A. Thermal barrier coatings for aircraft engines: History and directions [J]. J. Therm. Spray Technol., 1997, 6: 35
5 Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2010, 83: 2023
6 Michel D, Jorba M P Y, Collongues R. Study by Raman spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures [J]. J. Raman Spectrosc., 2010, 5: 163
7 Hua Y Q, Jiang B C, Chen R F, et al. Enhanced physical properties of TiSi2 doped Gd2Zr2O7 ceramic for thermal barrier coatings [J]. Mater. Res. Express, 2019, 6: 056547
8 Wu J, Wei X Z, Padture N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications [J]. J. Am. Ceram. Soc., 2002, 85: 3031
9 Mahade S, Curry N, Björklund S, et al. Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray [J]. J. Therm. Spray Technol., 2017, 26: 108
10 Xiang J Y, Chen S H, Huang J H, et al. Phase structure and thermophysical properties of co-doped La2Zr2O7 ceramics for thermal barrier coatings [J]. Ceram. Int., 2012, 38: 3607
11 Kang Y X, Bai Y, Fan W, et al. Thermal cycling performance of La2Ce2O7/50vol.% YSZ composite thermal barrier coating with CMAS corrosion [J]. J. Eur. Ceram. Soc., 2018, 38: 2851
12 Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
13 Chen C, Liang Y F, Liang T Q, et al. Research progress on hot corrosion of rare earth oxides Co-doped ZrO2 ceramic coatings in molten Na2SO4+NaVO3 salts [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 291
13 陈超, 梁艳芬, 梁天权等. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 291
14 Zhang S P, Hua Y Q, Shuai W W, et al. Thermophysical properties of Gd2(CexZr1-x)2O7 ceramic materials [J]. J. Ceram., 2019, 49: 301
14 张少朋, 花银群, 帅文文等. Gd2(CexZr1-x)2O7陶瓷材料的热物理性能研究 [J]. 陶瓷学报, 2019, 49: 301
15 Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
16 Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
17 Poerschke D L, Levi C G. Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS [J]. J. Eur. Ceram. Soc., 2015, 35: 681
18 Zhou X, Zou B L, He L M, et al. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures [J]. Corros. Sci., 2015, 100: 566
19 Drexler J M, Chen C H, Gledhill A D, et al. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass [J]. Surf. Coat. Technol., 2012, 206: 3911
20 Drexler J M, Ortiz A L, Padture N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass [J]. Acta Mater., 2012, 60: 5437
21 Deng W Z, Fergus J W. Effect of CMAS composition on hot corrosion behavior of gadolinium zirconate thermal barrier coating materials [J]. J. Electrochem. Soc., 2017, 164: C526
22 Zhou H M, Yi D Q, Yu Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings [J]. J. Alloy. Compd., 2007, 438: 217
23 Zhong X H, Zhao H Y, Zhou X M, et al. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating [J]. J. Alloy. Compd., 2014, 593: 50
[1] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[2] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[3] 吕文静,张颖君,师超,邵亚薇,王艳秋,孟国哲. 水溶性掺杂聚苯胺的制备及其性能研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 519-524.
[4] 杨青松,李纯,王杰,杨仲年,张昭,张鉴清. 阳极电沉积制备CeO2薄膜[J]. 中国腐蚀与防护学报, 2012, 32(1): 34-38.
[5] 石南林,刘宝蕴,张彦英,宫骏,孙超. 聚苯胺在水中的抗菌作用[J]. 中国腐蚀与防护学报, 2011, 31(5): 385-388.
[6] 张颖君,冯涛,邵亚薇,孟国哲,张涛,王福会. 聚苯胺/环氧涂层对AZ91D镁合金耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 283-287.
[7] 李春福 王 戎 牛艳花 朱泽华 李天雷. 纳米掺杂对Al2O3+13%TiO2等离子喷涂涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 331-336.