Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 366-374    DOI: 10.11902/1005.4537.2016.048
Orginal Article Current Issue | Archive | Adv Search |
Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers
Weihang ZHAO1, Haowei WANG2, Guangyi CAI1, Zehua DONG1,3()
1 Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 China Special Vehicle Research Institute, Jingmen 448035, China
3 School of Chemical and Food Science, Hubei University of Art and Science, Xiangyang 433500, China
Download:  HTML  PDF(7984KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The marine atmospheric corrosion of Al-alloys could be originated from the localized corrosion beneath thin electrolyte layers. The pitting initiation of Al-alloy AA6061 beneath thin electrolyte layer of 3.5%NaCl and bulk solution, as well as the corrosion inhibition of cerium ions were comparatively investigated by means of polarization curves, electrochemical impedance, electrochemical noise and micro-morphological observation. Results demonstrate that, as a cathodic corrosion inhibitor, the density and coverage of the deposited CeO2 film is mainly related to the thickness of thin electrolyte layer, the thinner the electrolyte layer is, the more compact the deposited CeO2 film becomes. As a result, the oxygen reduction on the secondary intermetallic phase (Mg2Si as cathode) of AA6061 alloy would be suppressed and therefore further refrain the initiation and development of pitting corrosion. The thinner the electrolyte layer, the higher the inhibition efficiency of cerium ions. Whereas, the inhibition efficiency of Ce3+ on the metastable pitting corrosion of AA6061 alloy in bulk NaCl solution decreases much more in the contrast to that beneath thin layer of NaCl solution.

Key words:  aluminum alloy      thin electrolyte layer      bulk solution      pitting corrosion      inhibitor     
Received:  09 April 2016     
ZTFLH:  TG172.5  
Fund: Supported by National Natural Science Foundation of China (51371087)
About author: 

These authors contributed equally to this work.

Cite this article: 

Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 366-374.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.048     OR     https://www.jcscp.org/EN/Y2017/V37/I4/366

Fig.1  Schematic diagram of experimental setup for corrosion under thin electrolyte layer (a) and planview of the electrodes (b)
Fig.2  Polarization curves of AA6061 aluminum alloy under 3.5%NaCl thin electrolyte layer with different thicknesses (a), and limited diffusion current density as a function of thickness of thin electrolyte layer (b)
Fig.3  Cathodic polarization curves of AA6061 alloy under 3.5%NaCl electrolyte layer with 1 mmol/L Ce3+ (a), 2.5 mmol/L (b), 4 mmol/L (c) and variations of limited diffusion current density with thickness of thin electrolyte layer (d)
Fig.4  Anodic polarization curves of AA6061 aluminum alloy in 3.5%NaCl solution containing 1 mmol/L Ce3+ under static and stirred conditions
Fig.5  Nyquist plots for AA6061 aluminum alloy immersedfor 48 h in 3.5%NaCl solution containing 1 mmol/L Ce3+ (a) and under corresponding thin electrolyte layer (b)
Fig.6  Time dependences of impedance of AA6061 aluminum alloy immersed in 3.5%NaCl solution containing 1 mmol/L Ce3+ (a) and under corresponding thin electrolyte layer (b)
Fig.7  Nyquist plots of AA6061 aluminum alloy at different DC polarization potentials in static NaCl solution (a), stirred NaCl+CeCl3 solution (b), static NaCl+CeCl3 solution (c), and impedance vs polarization potential curves (d)
Fig.8  Potentials and current fluctuations of AA6061 aluminum alloy under thin electrolyte layer of 3.5%NaCl solution containing 1 mmol/L Ce3+ (a), and in corresponding bulk solution (b), under thin electrolyte layer of 3.5%NaCl soulution (c) and in corresponding bulk solution (d)
Fig.9  Comparisons of the nucleation rate (λ) and average integral charge (qc) of metastable pits of AA6061 aluminum alloy in different conditions: (A) under thin electrolyte layer of 3.5%NaCl solution containing 1 mmol/L Ce3+ and (B) in corresponding bulk solution, (C) under thin electrolyte layer of 3.5%NaCl solution and (D) in corresponding bulk solution
Fig.10  Morphologies of AA6061 aluminum alloy immersed for 48 h under 100 μm 3.5%NaCl thin electrolyte layer (a) and in corresponding bulk solution (b), under thin electrolyte layer of 3.5%NaCl solution containing 1 mmol/L Ce3+ (c) and in corresponding bulk solution (d)
Fig.11  Schematic models for pitting corrosion and inhibition of aluminum alloy in bulk solution and under thin electrolyte layer
[1] Liu X Y, Jiang J M, Chen Z T, et al.Research progress in anti-corrosive protection for aluminum alloy[J]. Mod. Paint. Finish., 2007, 10(12): 11(刘希燕, 蒋健明, 陈正涛等. 铝合金防腐保护研究进展[J]. 现代涂料与涂装, 2007, 10(12): 11)
[2] Godard H P.The Corrosion of Light Metals[M]. New York: John Wiley & Sons Inc, 1967
[3] Sherif E M, Ammar H R, Khalil K A.Effects of copper and titanium on the corrosion behavior of newly fabricated nanocrystalline aluminum in natural seawater[J]. Appl. Surf. Sci., 2014, 301: 142
[4] Huang Y S, Shih T S, Chou J H.Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure[J]. Appl. Surf. Sci., 2013, 283: 249
[5] Su J X, Zou Y, Chen K M, et al.Corrosion mechanism and characteristic of 7075-T6 aluminum alloy panel on airline aircraft[J]. J. Mech. Eng., 2013, 49(8): 91(苏景新, 邹阳, 陈康敏等. 民航客机7075-T6铝合金壁板的腐蚀特征与机制[J]. 机械工程学报, 2013, 49(8): 91)
[6] Han D S, Li D.Influence of marine atmosphere humidity on initial corrosion of LY 12[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 134(韩德盛, 李荻. 海洋大气湿度对LY12铝合金初期腐蚀的影响[J]. 中国腐蚀与防护学报, 2007, 27: 134)
[7] Grilli R, Baker M A, Castle J E, et al.Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corros. Sci., 2010, 52: 2855
[8] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48: 2882
[9] Nguyen T H, Foley R T.The chemical nature of aluminum corrosion II. the initial dissolution step[J]. J. Electrochem. Soc., 1982, 129: 27
[10] Fang X Z, Cao X J, Yan W, et al.Research on correlation of lab accelerated corrosion tests and marine atmospheric tests of 7A52 aluminum alloy[J]. Environ. Sci. Technol., 2015, 33: 358(方晓祖, 曹学军, 闫薇等. 7A52铝合金海洋大气环境试验与室内加速试验的相关性研究[J]. 环境工程, 2015, 33: 358)
[11] Liu Y J, Wang Z Y, Ke W.Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al[J]. Corros. Sci., 2014, 80: 169
[12] Elola A S, Otero T F, Porro A.Evolution of the pitting of aluminum exposed to the atmosphere[J]. Corrosion, 1992, 48: 854
[13] Wan Y, Yan C W, Cao C N.Atmospheric corrosion of A3 steel deposited with different salts[J]. Acta Phys.-Chim. Sin., 2004, 20: 659(万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀的影响[J]. 物理化学学报, 2004, 20: 659)
[14] Zhou H R, L X G, Dong C F. Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film[J]. Equip. Environ. Eng., 2006, 3(1): 1(周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[15] Shao M H, Fu Y, Hu R G, et al.Localized corrosion study of 2024-T3 alloy by scanning micro reference electrode technique[J]. Acta. Phys. -Chim. Sin., 2002, 18: 350(邵敏华, 付燕, 胡融刚等. Al2024—T3合金局部腐蚀的扫描微电极研究[J]. 物理化学学报, 2002, 18: 350)
[16] Cao C N.Principle of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008(曹楚南. 腐蚀电化学原理 [M]. (第三版). 北京: 化学工业出版社, 2008)
[17] Wang H L, Zheng J S.Progress of research on environmental-friendly corrosion inhibitors[J]. Corros. Sci. Prot. Technol., 2002, 14: 275(王慧龙, 郑家燊. 环境友好缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2002, 14: 275)
[18] Hao J L, Gao Y J, Dong Z H.Effect of siloxane sulfide and cerium salt complex conversion film on corrosion resistance of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 525(郝敬丽, 高永晶, 董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35: 525)
[19] Zhong X K, Zhang G A, Qiu Y B, et al.The corrosion of tin under thin electrolyte layers containing chloride[J]. Corros. Sci., 2013, 66: 14
[20] Han W, Pan C, Wang Z Y, et al.A study on the initial corrosion behavior of carbon steel exposed to outdoor wet-dry cyclic condition[J]. Corros. Sci., 2014, 88: 89
[21] Wang F P, Yang C W, Zhang X Y, et al.Corrosion kinetics of zinc under thin electrolyte film by means of QCM[J]. Acta Phys.-Chim. Sin., 2001, 17: 319(王凤平, 严川伟, 张学元等. 石英晶体微天平研究Zn在薄液膜下的腐蚀动力学[J]. 物理化学学报, 2001, 17: 319)
[22] Aramaki K.Treatment of zinc surface with cerium (III) nitrate to prevent zinc corrosion in aerated 0. 5 M NaCl[J]. Corros. Sci., 2001, 43: 2201
[23] Arenas M A, Conde A, De Damborenea J J. Cerium: A suitable green corrosion inhibitor for tinplate[J]. Corros. Sci., 2002, 44: 511
[24] Cheng Y F, Luo J L, Wilmott M.Spectral analysis of electrochemical noise with different transient shapes[J]. Electrochim. Acta, 2000, 45: 1763
[25] Dong Z H, Shi W, Guo X P.Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corros. Sci., 2011, 53: 1322
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[7] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[8] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[9] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[10] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[12] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[13] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[14] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[15] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
No Suggested Reading articles found!