Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 360-365    DOI: 10.11902/1005.4537.2016.097
Orginal Article Current Issue | Archive | Adv Search |
Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M
Li FENG1(), Ligong ZHANG1, Sizhen LI1, Dajiang ZHENG2(), Changjian LIN3, Shigang DONG4
1 Beijing Spacecrafts China Academy of Space Technology, Beijing 100190, China
2 College of Materials, Xiamen University, Xiamen 361005, China
3 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
4 College of Energy, and School of Energy Research, Xiamen University, Xiamen 361005, China
Download:  HTML  PDF(3254KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Black oxide films on Mg-alloy AZ40M were prepared by means of a two-step micro-arc oxidation process in electrolytes of 15 g/L Na3PO4+ 3 g/L NaF+5.6 g/L KOH and 20 g/L Na3PO4+5 g/L NaF with different additions of ferric citrate respectively. The microstructure and composition of the films were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-Ray diffractometer (XRD). The electrochemical corrosion property of the films was assessed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves in 0.1 mol/L NaCl solution. Results showed that the concentration of ferric citrate strongly affects the surface morphology, composition and thickness of the formed oxide films. The oxide films have good corrosion resistance. The thicker oxide film with less iron content presents better corrosion resistance.

Key words:  magnesium alloy      micro-arc oxidation      black oxide film layer      corrosion      electrochemicalimpedance spectroscopy     
Received:  13 July 2016     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (21321062)
About author: 

These authors contributed equally to this work.

Cite this article: 

Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 360-365.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.097     OR     https://www.jcscp.org/EN/Y2017/V37/I4/360

Fig.1  Digital images of MAO layers formed on AZ40M alloy in the electrolytes with different concentrations of ferric citrate
Fig.2  Average thicknesses of MAO layers prepared in the electrolytes with different concentrations of ferric citrate
Fig.3  Surface SEM images of AZ40M magnesium alloy (a) and the magrified image of area I in Fig.3a (b)
Fig.4  XRD spectra of AZ40M Mg alloy before and after MAO in the electrolytes with different concentrations of ferric citrate
Fig.5  Surface morphologies of MAO films prepared in the electrolytes with 5 g/L (a), 10 g/L (b), 15 g/L (c) and 20 g/L (d) ferric citrate
Concentration of ferric citrate C O Na Mg Al P Fe
C1: 5 g/L 5.58 55.80 2.27 19.44 0.69 14.07 2.15
C2: 10 g/L 7.78 57.54 1.47 21.49 0.60 8.16 2.96
C3: 15 g/L 6.49 55.13 2.77 20.51 0.71 10.83 3.57
C4: 20 g/L 14.62 39.77 2.21 17.24 0.58 14.14 11.44
Table 1  Elements contents of MAO films prepared in the electrolytes with different concentrations of ferric citrate (atomic fraction / %)
Fig.6  Bode (a) and Nyquist (b) plots of MAO treated AZ40M Mg alloy after immersed in 0.1 mol/L NaCl for 20 min(the inset is the enlarged view of high frequency region)
Fig.7  Potentiodynamic polarization curves of MAO treated AZ40M Mg-alloy after immersed in 0.1 mol/L NaCl for 30 min
Sample I / μAcm-2 Rp / kΩcm2 Ecorr / V
Mg alloy 17.7 3.98 -1.464
C1 0.89 70.9 -1.702
C2 0.15 449 -1.569
C3 0.57 267 -1.528
C4 0.26 203 -1.531
Table 2  Tafel fitted parameters of potentiodynamic polarization curves in Fig.7
[1] Kulekci M K.Magnesium and its alloys applications in automotive industry[J]. Int. J. Adv. Manuf. Technol., 2008, 39: 851
[2] Liu W L, Wang S Q.Application and development of magnesium alloy[J]. Intelligence, 2011, (27): 250(刘文龙, 王淑琴. 镁合金应用及发展论述[J]. 才智, 2011, (27): 250)
[3] Zhang Y F.Prospects analysis on the development of magnesium alloy applications in our country[J]. New Technol. New Prod. China, 2010, (9): 106(张运法. 我国镁合金应用领域开发前景分析[J]. 中国新技术新产品, 2010, (9): 106)
[4] Wang Z T, Li Y G.Evaluation of European Union on the application of wrought magnesium alloy for aerospace vehicle[J]. Aluminium Fabrication, 2010, (5): 8(王祝堂, 李永革. 欧盟对航空航天器变形镁合金应用的评估[J]. 铝加工, 2010, (5): 8)
[5] Ding W J, Wu Y J, Peng L M, et al.Research and application development of advanced magnesium alloys[J]. Mater. China, 2010, 29(8): 37(丁文江, 吴玉娟, 彭立明等. 高性能镁合金研究及应用的新进展[J]. 中国材料进展, 2010, 29(8): 37)
[6] Song G L, Atrens A.Corrosion mechanisms of magnesium alloys[J]. Adv. Eng. Mater., 1999, 1: 11
[7] Xu W J, Ma Y, Lv W L, et al.Effect factors of corrosion behaviors of magnesium alloys[J]. Corros. Prot., 2007, 28: 163(徐卫军, 马颖, 吕维玲等. 镁合金腐蚀的影响因素[J]. 腐蚀与防护, 2007, 28: 163)
[8] Guo G W, Su T J, Tan C W, et al.Advances in research on corrosion and protection of magnesium alloys[J]. New. Technol. New Process, 2007, (9): 69(郭冠伟, 苏铁健, 谭成文等. 镁合金腐蚀与防护研究现状及进展[J]. 新技术新工艺, 2007, (9): 69)
[9] Wang W Q, Pan F S, Zuo R L.Recent development on corrosion and protective measures of magnesium alloys[J]. Ordn. Mater. Sci. Eng., 2006, 29(2): 73(王维青, 潘复生, 左汝林. 镁合金腐蚀及防护研究新进展[J]. 兵器材料科学与工程, 2006, 29(2): 73)
[10] Gong P, Cao X J, Ning S Q, et al.Influence of different environments on atmospheric corrosion of AZ61 magnesium alloy[J]. Chin. Surf. Eng., 2015, 28(5): 123(龚沛, 曹学军, 宁韶奇等. 不同环境对AZ61镁合金大气腐蚀的影响[J]. 中国表面工程, 2015, 28(5): 123)
[11] Li S S, Ma J, Jia P P, et al.Abrasive resistance and corrosion resistance of tungsten coating prepared on AZ31 magnesium alloy by chemical vapor deposition[J]. Chin. Surf. Eng., 2014, 27(1): 40(李思思, 马捷, 贾平平等. AZ31镁合金表面化学气相沉积钨涂层工艺及其耐蚀性和耐磨性[J]. 中国表面工程, 2014, 27(1): 40)
[12] Gray J E, Luan B.Protective coatings on magnesium and its alloys-a critical review[J]. J. Alloy. Compd., 2002, 336: 88
[13] Krz?ka?a A, Kazek-K?sik A, Simka W.Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys[J]. RSC Adv., 2013, 3: 19725
[14] Song W H, Jun Y K, Han Y, et al.Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials, 2004, 25: 3341
[15] Chen L, Han J, Yu S X.Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys[J]. Rare Met., 2006, 25: 146
[16] Huo Z Z, Guo F, Liu L, et al.Coloring mechanism of micro-arc oxidation ceramic black coating on aluminum alloy[J]. Trans. Mater. Heat Treat., 2014, 35: 158(霍珍珍, 郭锋, 刘亮等. 铝合金微弧氧化黑色陶瓷膜着色机理[J]. 材料热处理学报, 2014, 35: 158)
[17] Zhang W F, Hu Z Q, Ma J, et al.Study on micro arc oxidation coloring of hard aluminium alloy surface[J]. Plat. Finish., 2009, 31: 9(张文凡, 胡正前, 马晋等. 硬铝合金表面微弧氧化着色工艺研究[J]. 电镀与精饰, 2009, 31: 9)
[18] Hao C W, Hu Z Q, Ma J, et al.Micro-arc oxidation coloring processing of LY12 aluminum alloy in Na2SiO3 electrolyte[J]. Packag. World, 2008, (4): 30(邝春伟, 胡正前, 马晋等. LY12铝合金在Na2SiO3电解液中微弧氧化着色处理研究[J]. 包装世界, 2008, (4): 30)
[19] Liu Y, Liu S M, Yu L P, et al.Summary on corrosion behavior and micro-arc oxidation for magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 99(刘胤, 刘时美, 于鲁萍等. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35: 99)
[20] Walsh F C, Low C T J, Wood R J K, et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys[J]. Trans. Inst. Metal Finish., 2009, 87: 122
[21] Duan H P, Du K Q, Yan C W, et al.Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D[J]. Electrochim. Acta, 2006, 51: 2898
[22] Ma Y, Zhan H, Ma Y Z, et al.Effects of electrical parameters on microstructure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J]. Chin. J. Nonferrous Met., 2010, 20: 1467(马颖, 詹华, 马跃洲等. 电参数对AZ91D镁合金微弧氧化膜层微观结构及耐蚀性的影响[J]. 中国有色金属学报, 2010, 20: 1467)
[23] Gu Y H, Cai X J, Ning C Y, et al.Effects of voltage on the microstructure and corrosion performance of microarc oxidation coated AZ31 magnesium alloys[J]. Chin. Surf. Eng., 2012, 25(6): 21(顾艳红, 蔡晓君, 宁成云等. 电压对AZ31镁合金微弧氧化涂层微观结构及腐蚀性能的影响[J]. 中国表面工程, 2012, 25(6): 21)
[24] Cui X J, Li X F, Li T, et al.Negative voltage on structure and corrosion resistance of micro-arc oxidation coating on AZ31B magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 137(崔学军, 李晓飞, 李特等. 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2016, 36: 137)
[25] Wang S Y, Xia Y P, Liu L.Influences of C3H8O3 concentration on formation and characteristics of MAO coatings on AZ91D magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 235(王淑艳, 夏永平, 刘莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33: 235)
[26] Li S Z, Bai J Y, Feng L, et al.Research on micro-arc oxidation coatings with thermal control on magnesium alloy [A]. Han C. International Federation for Heat Treatment and Surface Engineering[M]. Amsterdam: Elsevier, 2013
[27] Xiong W, Wang J.Preparation and study on the coloring coating by micro-arc oxidation on magnesium alloy[J]. Sci. Technol. Inform., 2012, (26): 244(熊伟, 王军. 镁合金微弧氧化着色膜层的制备与研究[J]. 科技信息, 2012, (26): 244)
[28] Chen X M, Luo C P, Liu J W.Study on the coloring coating by micro-arc oxidation on magnesium alloy[J]. Mater. Rev., 2009, 23: 535(陈显明, 罗承萍, 刘江文. 镁合金微弧氧化着色膜研究[J]. 材料导报, 2009, 23: 535)
[29] Bai J Y, Li S Z, Zheng D J, et al.Preparation and characterization of black micro-arc oxidation film[J]. Acta Phys.-Chim. Sin., 2016, 32: 2271(白晶莹, 李思振, 郑大江等. 黑色微弧氧化膜的制备及其表征[J]. 物理化学学报, 2016, 32: 2271)
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!