Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 309-316    DOI: 10.11902/1005.4537.2019.095
Current Issue | Archive | Adv Search |
Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2
HE San1(), SUN Yinjuan2, ZHANG Zhihao2, CHENG Jie2, QIU Yunpeng1, GAO Chaoyang1
1. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
2. Xi'an Changqing Technology Engineering Co. Ltd. , Xi'an 710000, China
Download:  HTML  PDF(5572KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 20# steel in CO2 saturated mixture liquor of alkanolamine solution with ionic liquid ([Bmim]BF4) was studied by means of weight loss measurement, electrochemical impedance spectroscopy (EIS) and SEM equipped with EDS. The results showed that monoethanolamine (MEA) was easy to degrade with CO2, and the formed degradation products would lead to severe corrosion of 20# steel in experimental conditions. When the [Bmim]BF4 was added, the corrosion of 20# steel was inhibited and hence its uniform corrosion rate was reduced. Besides, due to the existence of BF4- in [Bmim]BF4, the range of passivation zone is narrowed, which is an important cause for pitting corrosion of 20# steel.

Key words:  CO2 capture      20# steel      MEA solution      [Bmim]BF4      uniform corrosion      pitting corrosion     
Received:  28 June 2019     
ZTFLH:  TG174  
Fund: National Science and Technology Major Project(2016ZX05016-003)
Corresponding Authors:  HE San     E-mail:  hesan@126.com

Cite this article: 

HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 309-316.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.095     OR     https://www.jcscp.org/EN/Y2020/V40/I4/309

Mass of mixed solution / g[Bmim]BF4gMass fraction of [Bmim]BF4 / %[Bmim]BF4molNaBF4gMass fraction of NaBF4 / %NaBF4mol
300155.00.06637.28762.43%0.0663
3003010.00.132714.57524.86%0.1327
3006020.00.265429.15059.72%0.2654
Table 1  Addition amounts of NaBF4
Fig.1  Variations of uniform corrosion rate of 20# carbon steel with the concentration of [Bmim]BF4 at 30 and 70 ℃
Fig.2  SEM images of corrosion product films formed on 20# steel after immersion in the mixed solutions with different concentrations of [Bmim]BF4: (a) 30% MEA+0%[Bmim]BF4, (b) 30%MEA+5%[Bmim]BF4, (c) 30%MEA+10%[Bmim]BF4, (d) 30%MEA+20%[Bmim]BF4
Fig.3  SEM images of 20# carbon steel after removal of corrosion product films formed during immersion in the mixed solutions with different concentrations of [Bmim]BF4: (a) 30%MEA+0%[Bmim]BF4, (b) 30%MEA+20%[Bmim]BF4
Fig.4  EDS results of the outer layers of corrosion product films formed on 20# steel during immersion in the mixed solutions with different concentrations of [Bmim]BF4: (a) area I in Fig.2a, (b) area II in Fig.2b, (c) area III in Fig.2c, (d) area IV in Fig.2d
Corcentration of [Bmim]BF4 / %Mass fraction %Atomic fraction %
081.5949.90
593.4877.28
1090.5670.31
2095.4083.51
Table 2  EDS analysis results of Fe
Fig.5  Polarization curves of 20# carbon steel in the mixed solutions with different concentrations of [Bmim]BF4 at 30 ℃ (a) and 70 ℃ (b)
Fig.6  Polarization curves of 20# carbon steel in the solutions containing the same molar mass of BF4-: (a) 30%MEA+5%[Bmim]BF4 (or 2.43%NaBF4), (b) 30%MEA+10%[Bmim]BF4 (or 4.86%NaBF4), (c) 30%MEA+20%[Bmim]BF4 (or 9.72%NaBF4)
Fig.7  EIS curves of 20# steel immersed in the mixed solution for 0.5 h at 30 ℃ (a) and 70 ℃ (b)
Fig.8  Equivalent circuits for fitting EIS of 20# steel immersed in the mixed solutions without (a) and with (b) [Bmim]BF4 for 0.5 h
Temperature / ℃Mass fraction of [Bmim]BF4 / %Rs / Ω·cm2CPE1-T / Ω-1·cm-2·s-1CPE1-PRp / Ω·cm2Rt / Ω·cm2CPE2-T / Ω-1·cm-2·s-1
3003.5564.38×10-40.78328450.80------
54.1064.17×10-40.79523---563.82.1548×10-2
104.8003.18×10-40.77613---11017.0330×10-3
205.2893.66×10-40.86637---15138.0210×10-3
7002.3298.22×10-40.7655380.93------
52.4756.05×10-40.76703---88.315.4759×10-1
102.5336.34×10-40.75338---94.371.6909×10-1
202.7696.61×10-40.76547---135.76.7300×10-1
Table 3  Fitting impedance parameters of 20# carbon steel in the mixed solutions with different concentrations of [Bmim]BF4 for 0.5 h at 30 and 70 ℃
[1] Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
doi: 10.1016/j.ijggc.2010.11.008
[2] Gale J, Davison J. Transmission of CO2-safety and economic considerations [A]. Greenhouse Gas Control Technologies-6th International Conference [C]. Kyoto, Japan, 2003: 517
[3] Osagie E, Biliyok C, Di Lorenzo G, et al. Techno-economic evaluation of the 2-amino-2-methyl-1-propanol (AMP) process for CO2 capture from natural gas combined cycle power plant [J]. Int. J. Greenhouse Gas Control, 2018, 70: 45
doi: 10.1016/j.ijggc.2018.01.010
[4] Bougie F, Pokras D, Fan X F. Novel non-aqueous MEA solutions for CO2 capture [J]. Int. J. Greenhouse Gas Control, 2019, 86: 34
doi: 10.1016/j.ijggc.2019.04.013
[5] Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review [J]. Chem. Eng. Res. Des., 2011, 89: 1609
doi: 10.1016/j.cherd.2010.11.005
[6] Brennecke J F, Gurkan B E. Ionic liquids for CO2 capture and emission reduction [J]. J. Phys. Chem. Lett., 2010, 1: 3459
doi: 10.1021/jz1014828
[7] Ma T, Wang J X, Du Z Z, et al. A process simulation study of CO2 capture by ionic liquids [J]. Int. J. Greenhouse Gas Control, 2017, 58: 223
[8] Ye Y S, Elabd Y A. Relative chemical stability of imidazolium-based alkaline anion exchange polymerized ionic liquids [J]. Macromolecules, 2011, 44: 8494
doi: 10.1021/ma201864u
[9] Cassity C G, Mirjafari A, Mobarrez N, et al. Ionic liquids of superior thermal stability [J]. Chem. Commun., 2013, 49: 7590
doi: 10.1039/c3cc44118k
[10] Camper D, Bara J E, Gin D L, et al. Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2 [J]. Ind. Eng. Chem. Res., 2008, 47: 8496
doi: 10.1021/ie801002m
[11] Feng Z, Ma J W, Zheng Z, et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions [J]. Chem. Eng. J., 2012, 181/182: 222
[12] Xiao M, Liu H L, Gao H X, et al. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine [J]. Appl. Energy, 2019, 235: 311
doi: 10.1016/j.apenergy.2018.10.103
[13] Akinola T E, Oko E, Wang M H. Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation [J]. Fuel, 2019, 236: 135
doi: 10.1016/j.fuel.2018.08.152
[14] Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions [J]. Ind. Eng. Chem. Res., 1999, 38: 3917
doi: 10.1021/ie9901630
[15] He S, Gao C Y, Zhang L. Research progress on corrosion of carbon steel during process of capture CO2 with monoethanolamine solution [J]. Corros. Sci. Prot. Technol., 2018, 30: 454
(贺三, 高超洋, 张岭. MEA捕集CO2腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 454)
doi: 10.11903/1002.6495.2017.226
[16] Bello A, Idem R O. Pathways for the formation of products of the oxidative degradation of CO2-loaded concentrated aqueous monoethanolamine solutions during CO2 absorption from flue gases [J]. Ind. Eng. Chem. Res., 2005, 44: 945
doi: 10.1021/ie049329+
[17] Saiwan C, Supap T, Idem R O, et al. Part 3: Corrosion and prevention in post-combustion CO2 capture systems [J]. Carbon Manag., 2011, 2: 659
doi: 10.4155/CMT.11.63
[18] DuPart M, Bacon T, Edwards D. Understanding corrosion in alkanolamine gas treating plants: Part 1 [J]. Hydrocarb. Process., 1993, 72: 75
[19] Tanthapanichakoon W, Veawab A, McGarvey B. Electrochemical investigation on the effect of heat-stable salts on corrosion in CO2 capture plants using aqueous solution of MEA [J]. Ind. Eng. Chem. Res., 2006, 45: 2586
[20] Fytianos G, Grimstvedt A, Knuutila H, et al. Effect of MEA's degradation products on corrosion at CO2 capture plants [J]. Energy Proced., 2014, 63: 1869
[21] Hasib-Ur-Rahman M, Larachi F. Prospects of using room-temperature ionic liquids as corrosion inhibitors in aqueous ethanolamine-based CO2 capture solvents [J]. Ind. Eng. Chem. Res., 2013, 52: 17682
doi: 10.1021/ie401816w
[22] Wu K X, Zhou X B, Wu X M, et al. Understanding the corrosion behavior of carbon steel in amino-functionalized ionic liquids for CO2 capture assisted by weight loss and electrochemical techniques [J]. Int. J. Greenhouse Gas Control, 2019, 83: 216
[23] Tseng C H, Chang J K, Chen J R, et al. Corrosion behaviors of materials in aluminum chloride-1-ethyl-3-methylimidazolium chloride ionic liquid [J]. Electrochem. Commun., 2010, 12: 1091
doi: 10.1016/j.elecom.2010.05.036
[24] Lin P C, Sun I W, Chang J K, et al. Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid [J]. Corros. Sci., 2011, 53: 4318
doi: 10.1016/j.corsci.2011.08.047
[25] Perissi I, Bardi U, Caporali S, et al. High temperature corrosion properties of ionic liquids [J]. Corros. Sci., 2006, 48: 2349
doi: 10.1016/j.corsci.2006.06.010
[26] Perissi I, Bardi U, Caporali S, et al. Ionic liquids as diathermic fluids for solar trough collectors’ technology: A corrosion study [J]. Sol. Energy Mater. Sol. Cells, 2008, 92: 510
doi: 10.1016/j.solmat.2007.11.007
[27] Shkurankov A, El Abedin S Z, Endres F. AFM-assisted investigation of the corrosion behaviour of magnesium and AZ91 alloys in an ionic liquid with varying water content [J]. Aust. J. Chem., 2007, 60: 35
doi: 10.1071/CH06305
[28] NACE. RP0775-2005 Preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations [S]. Houston, TX: NACE International Publication, Item, 2005
[29] Fytianos G, Ucar S, Grimstvedt A, et al. Corrosion evaluation of MEA solutions by SEM-EDS, ICP-MS and XRD [J]. Energy Proced., 2016, 86: 197
doi: 10.1016/j.egypro.2016.01.020
[30] Xiang Y, Yan M C, Choi Y S, et al. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process [J]. Int. J. Greenhouse Gas Control, 2014, 30: 125
[31] Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd Ed. Beijing: Chemical Industry Press, 2004
(曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004)
[32] Atilhan M, Jacquemin J, Rooney D, et al. Viscous behavior of imidazolium-based ionic liquids [J]. Ind. Eng. Chem. Res., 2013, 52: 16774
doi: 10.1021/ie403065u
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[7] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[8] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[9] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[10] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[11] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[12] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[13] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[14] Jingli HAO,Yongjing GAO,Zehua DONG. Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy[J]. 中国腐蚀与防护学报, 2015, 35(6): 525-534.
[15] Yurong FANG,Chaoyang FU. Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
No Suggested Reading articles found!