Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (2): 159-163    DOI:
Current Issue | Archive | Adv Search |
Effects of pH on Corrosion Behavior of Carbon Steelin Oilfield Water with High Sulphide
WU Xinmin1, SHAO Xiuli1, XUE Chen2, ZHANG Caixia3, FANG Fang4
1. Xi'an Shiyou University, Xi'an 710065, China;
2. Safety Environment Quality Supervision Department, Yanchang Oilfield Company, Yan’an 716000, China;
3. Lanzhou City College, Lanzhou 730070, China;
4. Xuguang Middle School, Wuhu 238321, China
Download:  PDF(2177KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior of J55 carbon steel in oilfield water with high sulphide at different pH values was investigated by electrochemical measurement and dynamic corrosion mass loss method. The corrosion scales were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that depolarization in cathode of the J55 carbon steel weakened and corrosion rate decreased as pH increased. When the pH was 5.6~7.2, the corrosion scale, which was mainly composed of mackinawite (FeS1-x) with coarse grains was loose and brittle. It fell off easily and was non-protective, leading to the serious corrosion on the carbon steel surface. When the pH was 8.7~11.0, strongly protective corrosion scale which was composed of iron oxide formed on the carbon steel surface and obvious passivation was found in the anode, leading to the slight corrosion on carbon steel surface.
Key words:  oilfield water      high sulphide      corrosion      polarization curve     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

WU Xinmin,SHAO Xiuli,XUE Chen,ZHANG Caixia,FANG Fang. Effects of pH on Corrosion Behavior of Carbon Steelin Oilfield Water with High Sulphide. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 159-163.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I2/159

[1] Xiong Y, Chen D J, Wang J, et al. Corrosive experimental study on simulating produced water of the oil-gas field [J]. Drill. Prod. Technol., 2008, 31(4): 118-121
(熊颖, 陈大钧, 王君等. 模拟油气田采出水的腐蚀性实验研究 [J]. 钻采工艺, 2008, 31(4): 118-121)
[2] Yu Y. Application of integrated downhole anticorrosion technology in produced water reinjection of oilfield [J]. Sino-Global Energy, 2007, 12(6): 59-61
(于燕. 油田污水回注井下综合防腐技术应用 [J]. 中外能源, 2007, 12(6): 59-61)
[3] Li H L, Xu L M. Simulation of A3 steel corrosion by main components in oilfield sewage [J]. Oil-Gasfield Surf. Eng., 2000, 19(2): 39-41
(李海玲, 许立铭. 模拟油田污水中主要成份对A3钢腐蚀的影响 [J]. 油气田地面工程, 2000, 19(2): 39-41)
[4] Fatah M C, Ismail M C, Ari W B, et al. Effects of sulphide ion on the corrosion behavior of X52 steel in a carbon dioxide environment at temperature 40 ℃[J]. Mater. Chem. Phys., 2011, 127(1-2): 347-352
[5] Tang J W, Shao Y W, Guo J B, et al.The effect of H2S concentration on the corrosion behavior of carbon steel at 90 ℃[ J]. Corros. Sci., 2010, 52: 2050-2058
[6] Veloz M A, Gonzalez I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S [J]. Electrochim. Acta, 2002, 48: 135-144
[7] Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions [J]. Electrochim. Acta, 2011, 56: 1752-1760
[8] Garcia A V, Alvare R J, Amaya M, et al. H2S and O2 influence on the corrosion of carbon steel immersed in a solution containing 3M diethanolamine [J]. Corros. Sci., 2010, 52: 2268-2279
[9] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions. III-Electrochemical behavior of carbon steel in the different pH solutions containing H2S [J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 97-104
(杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究. III-不同pH值H2S溶液中碳钢的腐蚀电化学行为 [J]. 中国腐蚀与防护学报, 2000, 20(2): 97-104)
[10] Wu X M, Fu W, Bai H T, et al. Study on compatibility between formation water and injection water in Jiyuan oilfield [J]. Oilfield Chem., 2012, 29(1): 33-37
(吴新民, 付伟, 白海涛等. 姬塬油田注入水与地层水配伍性研究[J]. 油田化学, 2012, 29(1): 33-37)
[11] Liu J, Lin Y, Yong X, et al. Study of cavitation corrosion behaviors and mechanism of carbon steel inneutral sodium chloride aqueous solution [J]. Corros. Sci., 2005, 61(11): 1061-1069
[12] Xue R, Cao Z Q, Zheng Z G. Electrochemical corrosion behavior of Cu-60Fe-12Cr alloy in Cl- medium [J]. J. Shenyang Normal Univ., 2005, 23(1): 64-67
(薛荣, 曹中秋, 郑志国. Cu-60Fe-12Cr合金在含Cl-介质中的电化学腐蚀行为 [J]. 沈阳师范大学学报, 2005, 23(1): 64-67)
[13] Diaz J G, Gonzalez R A. H2S corrosion inhibition of an ultra high strength pipeline by carboxyethyl-imidazoline [J]. J. Appl. Electrochem., 2010, 40: 1633-1640
[14] Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions [J]. Corros. Sci., 2000, 42(10): 1669-1683
[15] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions [J]. J. Chin. Soc. Corros. Prot., 2000, 20(1): 1-7
(杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究 [J]. 中国腐蚀与防护学报, 2000, 20(1): 1-7)
[16] Iva B, Martin B, Outi H, et al. Effect of sulphide on the corrosion behavior of AISI316L stainless steel and its constituent elements in simulated Kraft digester conditions [J]. Corros. Sci., 2010, 52(4): 1499-1507
[17] Ren C Q, Liu D X, Bai Z Q, et al. Corrosion behavior of oil tube steel in simulated solution with hydrogen sulfide and carbon dioxide [J]. Mater. Chem. Phys., 2005, 93: 305-309
[18] Tang J W, Shao Y W, Tao Z, et al. Corrosion behavior of carbon steel in different concentrations of HCl solutions containing H2S at 90 ℃[J]. Corros. Sci., 2011, 53: 1715-1723
[19] Gholamreza V, Hugues M, Louis B. Effect of sulfate and chloride ions on the electrochemical behavior of iron in aqueous phosphate solutions [J]. J. Appl. Electrochem., 1998, 28: 999-1004
[20] Hamdy A S, Sa'eh A G, Shoeib M A, et al. Evaluation of corrosion and erosion-corrosion resistances of mild steel in sulfide-containing NaCl aerated solutions [J]. Electrochim. Acta, 2007, 52: 7068-7074
[21] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955-960
[22] Chikh Z A, Chebabe D, Dermaj A, et al. Electrochemical and analytical study of corrosion inhibition on carbon steel in HCl medium by 1,12-bis (1,2,4-triazol- yl) dodecane [J]. Corros. Sci., 2005, 47: 447-459
[23] Li F S, An M Z, Liu G Z, et al. Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels [J]. Mater. Chem. Phys., 2009, 113: 971-976
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!