Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (2): 164-170    DOI:
Current Issue | Archive | Adv Search |
Corrosion Resistance Properties of Domestic 825 Alloy
FENG Yong1, HE Deliang1, GONG Desheng2, LI Fei1, WU Jianxin2
1. College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China;
2. Yueyang Changling Equipment Research Institute Co. Ltd., Yueyang 414014, China
Download:  PDF(3569KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Corrosion behaviors of domestic 825 alloy in HCl, NaOH and NaCl solutions were studied by corrosion mass loss, electrochemical test and stress corrosion at slow strain rate. Meanwhile, the corrosion morphologies were investigated by optical microscopy and scanning electron microscopy (SEM). The results showed that the corrosion behavior of the domestic 825 alloy was not obvious after immersion in NaOH and NaCl solutions for 5 months. However, it corroded evidently after immersion in HCl solution for 7 d, and the corrosion rate in HCl solution increased with increasing HCl concentration. Furthermore, the corrosion current of the domestic 825 alloy increased with increasing concentration of HCl, NaOH and NaCl solution, respectively. The stress corrosion tests at slow strain rate showed that the domestic 825 alloy had no stress corrosion susceptibility in the HCl, NaOH and NaCl solution, thus no stress corrosion crack would occur under normal circumstance.
Key words:  domestic 825 alloy      corrosion mass loss      electrochemical test      stress corrosion crack     
ZTFLH:  TG178  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

FENG Yong,HE Deliang,GONG Desheng,LI Fei,WU Jianxin. Corrosion Resistance Properties of Domestic 825 Alloy. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 164-170.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I2/164

[1] Ge L, Chen C F, Zheng S Q, et al. Corrosion behavior of nickel based alloy 825 in high temperature and high pressure H2S/ CO2 environments [J]. Corros. Prot., 2009, 30(10): 708-716
(戈磊, 陈长风, 郑树启等. 高温高压H2S/CO2 环境中镍基合金825的腐蚀行为 [J]. 腐蚀与防护, 2009, 30(10): 708-716)
[2] Raul B R, Paul C. Nickel alloys for corrosive environments [J]. Adv. Mater. Process., 2000, 157(2): 37-42
[3] Yang R C, Shu J, Chen K, et al. Research on valence electronst ructures and properties of Ni-based corrosion resistant alloy [J]. Trans. Nonferrous Met. Soc. Chin., 2007, 16: 84-87
[4] Yang R C, Wang H, Zheng L P, et al. Characteristics and research trends of high performance ni-base corrosion resistant alloys [J]. Mater. Rev., 2001, 15(11): 21-23
(杨瑞成, 王晖, 郑丽平等. 高性能Ni基耐蚀合金的特性和研究动向 [J]. 材料导报, 2001, 15(11): 21-23)
[5] Sun H P, Hu C S, Li G H, et al. Development of corrosion resistant ni-base alloys NSS334 [J]. Chin. Metall., 2007, 17(5): 35-38
(孙槐平, 胡传顺, 李光辉等. 镍基耐蚀合金NSS334的研制 [J]. 中国冶金, 2007, 17(5): 35-38)
[6] Ma G Y. Corrosion resistant analysis of nickel and nickel alloy [J]. Chem. Equip. Technol., 2007, 28(1): 71-74
(马国印. 镍和镍合金耐蚀性分析 [J]. 化工装备技术, 2007, 28(1): 71-74)
[7] Zhang S L, Zhang H B. Incoloy 825 corrosion resistant ally [J]. Sichuan Metall., 2004, 26(6): 28-30
(张菽浪, 张红斌. Incoloy 825耐蚀合金 [J]. 四川冶金, 2004, 26(6): 28-30)
[8] Wang C, Ju S H, Xun S L, et al. Progress in research on nickel-based corrosion resistant alloys [J]. Mater. Rev., 2009, 23(2): 71-76
(王成, 巨少华, 荀淑玲等. 镍基耐蚀合金研究进展 [J]. 材料导报, 2009, 23(2): 71-76)
[9] Le Canut J M, Maximovitch S, Dalard F. Electrochemical characterisation of nickel-based alloys in sulphate solutions at 320oC [J]. J. Nucl. Mater., 2004, 334(1): 13-27
[10] Yang I J. Electrochemical study of nickel-based alloys in high temperature water chemistry [J]. Mater. Chem. Phys., 1997, 49(1): 50-55
[11] Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253(20): 8371-8376
[12] Ren C, Liu D, Bai Z, et al. Corrosion behavior of oil tube steel in simulant solution with hydrogen sulfide and carbon dioxide [J]. Mater. Chem. Phys., 2005, 93(2): 305-309
[13] Zhang G X, Lang Y P. Research and development of domestic high alloy 825 steel pipe and plate materials [J]. Pet. Refinery Eng., 2009, 39(6): 16-19
(张国信, 郎宇平, 国产825钢管和钢板高合金材料研制及开发 [J]. 炼油技术与工程, 2009, 39(6): 16-19)
[14] HB7235-95. Slow strain rate stress corrosion test methods [S]. Beijing: Aviation Industry Corporation of China, 1995
(HB7235-95. 慢应变速率应力腐蚀试验方法 [S]. 北京: 中国航空工业总公司, 1995)
[15] Cabello G, Funkhouser G, Cassidy J, et al. Inhibition by CO of the corrosion of Fe, Ni, and their alloys in concentrated HCl solutions [J]. J. Electroanal. Chem., 2011, 662(1): 150-156
[16] Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys [J]. Desalination, 2008, 228(1-3): 61-67
[1] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[8] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[11] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
No Suggested Reading articles found!