Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 686-690    DOI: 10.11902/1005.4537.2020.190
Current Issue | Archive | Adv Search |
Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy
ZHANG Xin1(), LIN Muyan1,2, YANG Guangheng1, WANG Zehua1, SHAO Jia1, ZHOU Zehua1
1.College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2.School of Materials Science and Engineering, Zejiang University, Hangzhou 315100, China
Download:  HTML  PDF(9091KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Er addition on the corrosion behavior of 5052 Al-alloy were investigated by means of electrochemical measurement and immersion test. as well as optical microscope (OM), scanning electron microscope (SEM) and energy disperse spectroscopy (EDS). The results indicated that with the increase of Er addition, the corrosion resistance of 5052 Al-alloy increased first, and then decreased. Among others, the 5052 Al-alloy with 0.4% Er addition had the best corrosion resistance. It is obvious that, a proper amount of Er addition could improve the corrosion resistance of 5052 Al-alloy effectively, whereas the excessive Er addition would increase the corrosion rate and reduce the corrosion resistance.

Key words:  5052 Al-alloy      rare metal Er      corrosion behavior      pitting corrosion     
Received:  12 October 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51909071);Natural Science Foundation of Jiangsu Province(BK20190493);Fundamental Research Funds for the Central Universities(B200202133)
Corresponding Authors:  ZHANG Xin     E-mail:  zhangxin.007@163.com
About author:  ZHANG Xin, E-mail: zhangxin.007@163.com

Cite this article: 

ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 686-690.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.190     OR     https://www.jcscp.org/EN/Y2021/V41/I5/686

No.ErMgCrZnMnFeAl
A102.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A20.05~0.202.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A30.25~0.402.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A40.45~0.602.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A50.65~0.802.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A60.85~1.002.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
Table 1  Chemical compositions of 5052 Al-alloy (mass fraction / %)
Fig.1  Surface morphologies of 5052 Al-alloy with different Er addition: (a) A1; (b) A2; (c) A3; (d) A4; (e) A5; (f) A6
PointAlMgFeEr
183.75---16.25---
282.36---17.64---
384.71------15.29
479.51------20.49
553.11------46.89
Table 2  EDS analysis of 5052 Al-alloy with different Er addition (mass fraction / %)
Fig.2  Surface morphologies of 5052 Al-alloys with different Er addition after immersion test: (a) A1; (b) A2; (c) A3; (d) A4; (e) A5; (f) A6
Fig.3  Surface morphologies of 5052 Al-alloys with different Er addition after immersion: (a) A1; (b) A3
PointAlMgFeEr
179.90---20.10---
284.42------15.58
Table 3  EDS analysis of 5052 Al-alloy with different Er addition in pitting area (mass fraction / %)
Fig.4  Potentiodynamic polarization curves of 5052 Al-alloy with different Er addition
No.Ecorr / VIcorr / μA·cm-2Epit / V
A1-1.447±0.1750.85±5.78-0.7421±0.12
A2-1.356±0.1436.89±4.21-0.7349±0.09
A3-1.324±0.1113.64±2.41-0.7101±0.12
A4-1.380±0.0817.68±2.89-0.7342±0.08
A5-1.390±0.1232.86±3.52-0.7367±0.06
A6-1.448±0.2153.96±6.28-0.7422±0.13
Table 4  Ecorr, Icorr, Epit values of 5052 Al-alloy with different Er addition
Fig.5  Nyquist diagram of 5052 Al-alloys with different Er addition
No.Rsol / Ω·cm2Qp / Ω-1·cm-2·s-1n1Rt / Ω·cm2Qdl (pit) / Ω-1·cm-2·s-1n2Rt (pit) / Ω·cm2
A17.3419.931×10-60.90291.705×10410.96×10-60.89402.330×104
A28.9159.162×10-60.90621.883×1048.36×10-60.95582.464×104
A311.0113.36×10-60.91902.528×1045.634×10-60.88055.408×104
A49.27810.22×10-60.89232.134×1049.64×10-60.99622.162×104
A59.0919.347×10-60.87981.218×10410.37×10-60.83182.236×104
A68.2937.278×10-60.86841.105×10412.07×10-60.86971.456×104
Table 5  Parameters of the equivalent elements in equivalent circuit for 5052 Al-alloys with different Er addition
1 Wu Z G, Song M, He Y H. Effects of Er on the microstructure and mechanical properties of an as-extruded Al-Mg alloy [J]. Mater. Sci. Eng., 2009, 504A: 183
2 Hou J, Zhang P H, Guo W M. Study on corrosion of aluminum alloys for ship applications in marine environment [J]. Equip. Environ. Eng., 2015, 12(2): 59
侯健, 张彭辉, 郭为民. 船用铝合金在海洋环境中的腐蚀研究 [J]. 装备环境工程, 2015, 12(2): 59
3 Chen J G, Su B, Luo X, et al. Microstructure and corrosion characteristics of aluminum alloy high voltage isolation switch parts applied in offshore environment with SO2 [J]. Corros. Prot., 2017, 38: 252
陈剑光, 苏贲, 罗雪等. 近海含SO2环境中高压隔离开关铝合金部件的组织及腐蚀特 [J]. 腐蚀与防护, 2017, 38: 252
4 Yang D N, Dong K H, Fu C F, et al. Corrosion failure analysis on Al-alloy parts of knife switches in Hainan power grid [J]. Corros. Sci. Prot. Technol., 2016, 28: 82
杨大宁, 董凯辉, 符传福等. 海南电网刀闸铝合金部件腐蚀失效分析 [J]. 腐蚀科学与防护技术, 2016, 28: 82
5 Wang Y, Gupta R K, Sukiman N L, et al. Influence of alloyed Nd content on the corrosion of an Al-5Mg alloy [J]. Corros. Sci., 2013, 73: 181
6 Ahmad Z, Ul-Hamid A, Abdul-Aleem B J. The corrosion behavior of scandium alloyed Al 5052 in neutral sodium chloride solution [J]. Corros. Sci., 2001, 43: 1227
7 Rosalbino F, Angelini E, De Negri S, et al. Influence of the rare earth content on the electrochemical behaviour of Al-Mg-Er alloys [J]. Intermetallics, 2003, 11: 435
8 Bethencourt M, Botana F J, Calvino J J, et al. Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review [J]. Corros. Sci., 1998, 40: 1803
9 Rosalbino F, Delsante S, Borzone G, et al. Influence of rare earth metals on the characteristics of anodic oxide films on aluminium and their dissolution behaviour in NaOH solution [J]. Corros. Sci., 2010, 52: 322
10 Zhang Y H, Yin Z M, Zhang J, et al. Recrystallization of Al-Mg-Sc-Zr alloys [J]. Rare Met. Mater. Eng., 2002, 31: 167
11 Mishra A K, Balasubramaniam R. Corrosion inhibition of aluminium by rare earth chlorides [J]. Mater. Chem. Phys., 2007, 103: 385
12 Zhou S A. Microstructural control and strengthening mechanism research on novel rare earth Sc modified Al-Mg alloys [D]. Hefei: HefeiUniversity of Technology, 2016
周士昂. 基于稀土元素Sc改性Al-Mg新型铝合金的组织控制与强化机理研究 [D]. 合肥: 合肥工业大学, 2016
13 Ji X L. Study on the microstructure and properties of Al-4.5Mg-0.7Mn-0.1Zr-Er [D]. Beijing: Beijing University of Technology, 2006
季小兰. Al-4.5Mg-0.7Mn-0.1Zr-Er合金微观组织与性能的研究 [D]. 北京: 北京工业大学, 2006
14 Yu X M. Effect of Er, Zr and Sr on microstructure and properties of 5052 alloy [D]. Chongqing: Southwest University, 2016
佘欣未. Er、Zr、Sr等微量元素对5052合金组织和性能的影响[D]. 重庆: 西南大学, 2016
15 Томашов Н Д, translated by Yu B N, et al. Theory of Metal Corrosion [M]. Beijing: Science Press, 1957
托马晓夫 H Д著, 余柏年译. 金属腐蚀理论 [M]. 北京: 科学出版社, 1957
[1] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[2] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[3] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[4] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[8] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[12] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[13] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[14] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[15] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
No Suggested Reading articles found!