Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 646-652    DOI: 10.11902/1005.4537.2020.238
Current Issue | Archive | Adv Search |
Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions
GAI Xipeng, LEI Li, CUI Zhongyu()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(4096KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting corrosion behavior of 304 stainless steel in two simulated concrete pore solutions with different chloride ion concentrations was assessed via electrochemical measurement methods and SEM, in terms of the critical chloride ion concentration for pitting initiation and surface morphology before and after test of 304 stainless steel. The results showed that the critical chloride ion concentration of 304 stainless steel determined by potentiodynamic polarization and potentiostatic electrochemical impedance spectrum in saturated Ca(OH)2 and HCO3-/CO32- solutions were basically consistent. The SEM test results also confirmed the above conclusion. The electrochemical impedance acquired form open circuit potential measurement could not reveal the critical chloride concentration.

Key words:  304 stainless steel      simulated concrete pore solution      critical chloride ion concentration      pitting corrosion     
Received:  18 November 2020     
ZTFLH:  TG174  
Fund: Basic Scientific Research Operating Expenses of Central Universities(201762008)
Corresponding Authors:  CUI Zhongyu     E-mail:  cuizhongyu@ouc.edu.cn
About author:  CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn

Cite this article: 

GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 646-652.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.238     OR     https://www.jcscp.org/EN/Y2021/V41/I5/646

Fig.1  Polarization curves of 304 stainless steel in chloride-containing saturated Ca(OH)2 solution (a) and HCO3-/CO32- alkaline solution (b), and the calculated critical chloride concentrations (c)
Fig.2  Nyquist (a, c) and Bode (b, d) plots of 304 stainless steel at open circuit potential in chloride-containing saturated Ca(OH)2 solution (a, b) and HCO3-/CO32- alkaline solution (c, d)
Fig.3  Nyquist (a, c) and Bode (b, d) plots of 304 stainless steel at constant potential in chloride-containing saturated Ca(OH)2 solution (a, b) and HCO3-/CO32- alkaline solution (c, d)
Fig.4  Proposed equivalent circuit models under the conditions below (a) and above (b) critical chloride ion concentration
SolutionCl-mol·L-1RpasskΩ·cm2

Rpit

Ω·cm2

Ri

Ω·cm2

n

CPEpass 10-3

Ω-1·cm-2·sn

n

CPEpit 10-3

Ω-1·cm-2·sn

HCO3-

CO32- alkaline solution

0703.8------0.9211.00------
0.05678.8------0.9210.76------
0.12768.5308160.757.940.823.31
Saturated Ca(OH)20661.3------0.9011.84------
0.05692------0.9012.10------
0.1717.1------0.9112.87------
0.2392.77588260.9212.920.5816.75
Table 1  Fitting parameters of EIS results of 304 stainless steel at different potentials in different simulated concrete pore solutions
Fig.5  Variations of Rtotal value of 304 stainless steel with chloride ion concentration in different simulated concrete pore solutions
Fig.6  SEM images of 304 stainless steel after potentiostatic polarization in 0.1 mol/L (a) and 0.2 mol/L (b) NaCl saturated Ca(OH)2 solutions, and 0.05 mol/L (c) and 0.12 mol/L (d) NaCl saturated HCO3-/CO32- alkaline solutions
1 Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides [J]. Electrochim. Acta, 2011, 56: 5280
2 Freire L, Catarino M A, Godinho M I, et al. Electrochemical and analytical investigation of passive films formed on stainless steels in alkaline media [J]. Cem. Concr. Comp., 2012, 34: 1075
3 Moser R D, Singh P M, Kahn L F, et al. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions [J]. Corros. Sci., 2012, 57: 241
4 Frankel G S. Pitting corrosion of metals: A review of the critical factors [J]. J. Electrochem. Soc., 1998, 145: 2186
5 Leckie H P, Uhlig H H. Environmental factors affecting the critical potential for pitting in 18-8 stainless steel [J]. J. Electrochem. Soc., 1966, 113: 1262
6 Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
7 Rosas O, Maya-Visuet E, Castaneda H. Effect of chloride ions on the electrochemical performance of LDX 2003 alloy in concrete and simulated concrete-pore solutions [J]. J. Appl. Electrochem., 2014, 44: 631
8 Al Ameri M, Yi Y, Cho P, et al. Critical conditions for pit initiation and growth of austenitic stainless steels [J]. Corros. Sci., 2015, 92: 209
9 Yang Q, Luo J L. The hydrogen-enhanced effects of chloride ions on the passivity of type 304 stainless steel [J]. Electrochim. Acta, 2000, 45: 3927
10 He J, Yan M S, Yang L J, et al. Electrochemical corrosion and critical pitting temperature of S32750 super duplex stainless steel in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 106
何进, 晏敏胜, 杨丽景等. S32750超级双相不锈钢在NaCl溶液中的临界点蚀温度及电化学腐蚀机理 [J]. 中国腐蚀与防护学报, 2015, 35: 106
11 Wang L W, Tian H Y, Gao H, et al. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment [J]. Appl. Surf. Sci., 2019, 492: 792
12 Crobu M, Scorciapino A, Elsener B, et al. The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys [J]. Electrochim. Acta, 2008, 53: 3364
13 Add El Meguid E A, Mahmoud N A, Gouda V K. Pitting corrosion behaviour of AISI 316L steel in chloride containing solutions [J]. Br. Corros. J., 1998, 33: 42
14 Tang Y M, Zuo Y, Wang J N, et al. The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions [J]. Corros. Sci., 2014, 80: 111
15 Wang H T, Zhao J M, Zuo Y, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 202
王海涛, 赵景茂, 左禹等. 几种阴离子对316L不锈钢亚稳态孔蚀行为的影响 [J]. 中国腐蚀与防护学报, 2002, 22: 202
16 Chen L, Qu Y, Tang Y B, et al. Critical chloride concentration of stainless steels in simulated concrete pore solutions [J]. Corros. Prot., 2014, 35: 446
陈龙, 瞿彧, 汤雁冰等. 不锈钢钢筋的临界氯离子浓度 [J]. 腐蚀与防护, 2014, 35: 446
17 Liu Y, Du R G, Lin C J. Effect of chloride ions on the corrosion behavior of reinforcing steel in simulated concrete pore solutions [J]. Electrochemistry, 2005, 11: 333
刘玉, 杜荣归, 林昌健. 氯离子对模拟混凝土孔隙液中钢筋腐蚀行为的影响 [J]. 电化学, 2005, 11: 333
18 Yang Z H, Shi M L. Regional distribution of impedance parameters of concrete [J]. J. Build. Mater., 1999, 2: 81
杨正宏, 史美伦. 混凝土交流阻抗参数的区域分布 [J]. 建筑材料学报, 1999, 2: 81
19 Knapp Q W, Wren J C. Film formation on type-316L stainless steel as a function of potential: Probing the role of gamma-radiation [J]. Electrochim. Acta, 2012, 80: 90
20 Serdar M, Žulj L V, Bjegović D. Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment [J]. Corros. Sci., 2013, 69: 149
21 Hoseinpoor M, Momeni M, Moayed M H, et al. EIS assessment of critical pitting temperature of 2205 duplex stainless steel in acidified ferric chloride solution [J]. Corros. Sci., 2014, 80: 197
[1] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[2] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[7] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[8] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[9] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[10] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[11] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[12] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[13] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[14] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[15] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
No Suggested Reading articles found!