Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 167-174    DOI: 10.11902/1005.4537.2018.183
Current Issue | Archive | Adv Search |
Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere
HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui(), DONG Chaofang, WU Junsheng, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(8125KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of riveted dissimilar metals TC4-316L in simulated marine atmospheric conditions was investigated by means of mass loss methods, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and confocal laser scanning microscopy. While the corrosion kinetics, rust composition, and corrosion morphology are mainly concerned. The results indicate 316L stainless steel is corroded when riveted parts TC4-316L were immersed in 3.5%NaCl solution periodically for 1200 h, but TC4 Ti-alloy has no obvious corrosion. The corrosion products of 316L stainless steel composed of FeOOH, Fe3O4 and Fe2O3, while the oxide scale formed on the surface of TC4 Ti-alloy is mainly TiO2 and Ti2O3. Compared with the corrosion behavior of the bare 316L stainless steel, the 316L stainless steel with riveted TC4 Ti-alloy was suffered from accelerated corrosion due to the combined effect of galvanic corrosion and crevice corrosion.

Key words:  riveted piece      periodic immersion      Ti-alloy      316L stainless steel      corrosion behavior     
Received:  21 December 2018     
ZTFLH:  TG174.3  
Fund: National Key R&D Program of China(2014CB643300)
Corresponding Authors:  XIAO Kui     E-mail:  xiaokui@ustb.edu.cn

Cite this article: 

HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 167-174.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.183     OR     https://www.jcscp.org/EN/Y2020/V40/I2/167

Fig.1  Schematic diagram of sample riveting
Fig.2  Corrosion macro-morphology of TC4 Ti-alloy in group C
Fig.3  Macroscopic morphologies of 316LSS in A (a), B (b) and C (c) groups after periodic immersion
Fig.4  Surface morphologies of 316LSS in A (a), B (b) and C (c) groups after rust removal
Fig.5  General view (a), 3D image (b) and depth determination (c) of a typical pitting on 316LSS in group A after derusting
Fig.6  General view (a), 3D image (b) and depth determination (c) of a typical pitting on 316LSS in group B after derusting
Fig.7  General view (a), 3D image (b) and depth determination (c) of a typical pitting on 316LSS in group C after derusting
Fig.8  SEM images of samples in 3 groups after periodical immersion test in 3.5%NaCl solution for 1200 h: (a) TC4 Ti-alloy in group C, (b) 316LSS in group C, (c) group A, (d) group B
Fig.9  EDS results of the surfaces of 316LSS samples in A (a), B (b) and C (c) groups after period immersion
Fig.10  XPS spectra of the surface of TC4 Ti-alloy sample in group C: (a) total spectrum, (b) Ti 2p, (c) O 1s
Fig.11  XPS spectra of corrosion products of 316LSS: (a) total spectrum, (b, c) Cr 2p, (d, e) Fe 2p, (f) O 1s
Fig.12  Open circuit potentials of TC4 Ti-alloy (a) and 316LSS (b) samples in 3.5%NaCl solution
[1] Liu H J, Deng C L, Wang J, et al. Research progress of galvanic corrosion in marine environment [J]. Equip. Environ. Eng., 2011, 8(2): 58
(刘华剑, 邓春龙, 王佳等. 海洋环境中电偶腐蚀研究进展 [J]. 装备环境工程, 2011, 8(2): 58)
[2] Shi C Y, Yu Q Z. Welding of Dissimilar Metals [M]. Beijing: China Machine Press, 2012
史春元, 于启湛. 异种金属的焊接 [M]. 北京: 机械工业出版社, 2012)
[3] Leyens C, Peter M, translated by Chen Z H. Titanium and Titanium Alloys [M]. Beijing: Chemical Industry Press, 2005
(Leyens C, Peter M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005)
[4] Wu J. Corrosion damage and anti-corrosion technology of stainless steel (6): Abrasion corrosion, cavitation corrosion and galvanic corrosion [J]. Corros. Prot., 1998, 19: 39
(吴剑. 不锈钢的腐蚀破坏与防蚀技术 (六): 磨耗腐蚀、空泡腐蚀及电偶腐蚀 [J]. 腐蚀与防护, 1998, 19: 39)
[5] Mu W N, Zhai Y C, Shi S Z. Preparation, formation mechanism and mechanical properties of multilayered TiO2-organic nanocomposite film [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1128
[6] Ni D D. Effects of iron complex on the photocatalytic properties of titanium dioxide for degradation of phenol [D]. Changchun: Northeast Normal University, 2016
(倪丹丹. 含铁配合物对二氧化钛光催化降解苯酚性能的影响 [D]. 长春: 东北师范大学, 2016)
[7] Chen L, Zhai Y, Tang Y B, et al. Critical chloride concentration of stainless steels in simulated concrete pore solutions [J]. Corros. Prot., 2014, 35: 446
(陈龙, 瞿彧, 汤雁冰等. 不锈钢钢筋的临界氯离子浓度 [J]. 腐蚀与防护, 2014, 35: 446)
[8] Rumble Jr J R, Bickham D M, Powell C J. The NIST X‐ray photoelectron spectroscopy database [J]. Surf. Interface Anal., 1992, 19: 24
[9] Kong D C, Dong C F, Fang Y H, et al. Copper corrosion in hot and dry atmosphere environment in Turpan, China [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1721
[10] Kocijan A, DonikČ, Jenko M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions [J]. Corros. Sci., 2007, 49: 2083
[11] Wang X Y, Wu M S, Zhang L, et al. Corrosion behavior in 3.5% NaCl solution of 316L SS [J]. Corros. Sci. Prot. Technol., 2000, 12: 311
(王轩义, 吴荫顺, 张琳等. 316L不锈钢钝化膜在Cl-介质中的耐蚀机制 [J]. 腐蚀科学与防护技术, 2000, 12: 311)
[12] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[13] Zhang D L, Wang W, Li Y. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion [J]. Corros. Sci., 2010, 52: 1277
[14] Liu J H. Galvanic corrosion behavior between titanium alloy and high-strength alloys [J]. J. Beijing Univ. Aeronaut. Astronaut., 2003, 29: 124
(刘建华. 高强合金与钛合金的电偶腐蚀行为 [J]. 北京航空航天大学学报, 2003, 29: 124)
[15] Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
(黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 46)
[16] Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
(陈兴伟, 吴建华, 王佳等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
[17] Liu S M, Fan G F. Investigation on galvanic corrosion susceptibility of heat-resistant stainless steel contacted with TA7 alloy [J]. J. Mater. Eng., 2000, (1): 17
(刘双梅, 樊国福. TA7钛合金/耐热不锈钢电偶腐蚀敏感性研究 [J]. 材料工程, 2000, (1): 17)
[1] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[7] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[8] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[9] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[11] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[13] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
No Suggested Reading articles found!