|
|
Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District |
WANG Xinhua1, YANG Yong1,2( ), CHEN Yingchun1, WEI Kailing1 |
1 College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100024, China 2 China Special Equipment Inspection and Research Institute, Beijing 100029, China |
|
|
Abstract In recent years, many accidents caused by alternating current (AC) corrosion have been reported. AC corrosion had become a serious potential damage to buried steel pipelines. X100 pipeline steel is very promising material for long distance gas pipeline, and the soil at Korla district is a kind of typical saline-alkali soil in the western China. The effects of AC current density (0~500 A/m2) on the corrosion behavior of X100 steel in an artificial solution, which simulated the soil medium at Korla district of the Xinjiang Uygur Autonomous Region was investigated by electrochemical test, immersion tests and surface analysis techniques. Results show that the average corrosion rate of X100 steel increases with the increasing AC current density. When the AC current density is below 100 A/m2, the corrosion is uniform corrosion, while local corrosion occurred under a larger AC current density. The corrosion product of X100 steel under AC interference may be differentiated as two layers. The outer layer is a loose yellow product mainly composed of FeOOH, and the inner layer is a relatively dense and black product with cracks mainly composed of Fe3O4, which has almost no protectiveness to the substrate. At the beginning of AC interference, the corrosion potential of X100 steel in the simulated solution shifts negatively and the higher the AC density is, the potential shifts more significant, but as the AC density higher than 200 A/m2, the corrosion potential shifts positively and then tends to be stable. The potentiodynamic polarization curve shows that X100 steel is actively dissolved in the test solution under AC interference, and the corrosion current density increases as the AC current density increases.
|
Received: 07 June 2019
|
|
Fund: National Natural Science Foundation of China(51471011);Science and Technology Plan Projects of State Administration for Market Regulation(2019MK136);CSEI Research Program(2019-Youth-03) |
Corresponding Authors:
YANG Yong
E-mail: 13810116863@126.com
|
[1] |
Kulman F E. Effects of alternating currents in causing corrosion [J]. Corrosion, 1961, 17: 34
|
[2] |
Gummow R A, Wakelin R G, Segall S M. AC corrosion-a new threat to pipeline integrity? [A]. Proc. 1st International Pipeline Conference (IPC) [C]. Calgary, Canada, 1996: 443
|
[3] |
Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment [J]. Surf. Technol., 2016, 45(2): 22
|
|
(符耀庆, 王秀通, 陈胜利. 南朗段埋地天然气管道杂散电流检测与治理 [J]. 表面技术, 2016, 45(2): 22)
|
[4] |
Guo A L, Zheng J Z. Detection, evaluation and preventive measures of stray current interference of product oil pipelines in Hunan [J]. Oil-Gasfield Surf. Eng., 2018, 37(9): 77
|
|
(郭爱玲, 郑京召. 湖南成品油管道杂散电流干扰检测评价及防护措施 [J]. 油气田地面工程, 2018, 37(9): 77)
|
[5] |
Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor [A]. Corrosion 2004 [C]. New Orleans, Louisiana: NACE International, 2004
|
[6] |
Movley C M. Pipeline Corrosion from Induced A. C. [A]. Corrosion 2005 [C]. Houston, Texas: NACE International, 2005
|
[7] |
Lalvani S B, Lin X A. A theoretical approach for predicting AC-induced corrosion [J]. Corros. Sci., 1994, 36: 1039
|
[8] |
Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I [J]. Corros. Sci., 1995, 37: 1567
|
[9] |
Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part II [J]. Corros. Sci., 1995, 37: 1583
|
[10] |
Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: Parameters influencing corrosion rate [J]. Corros. Sci., 2010, 52: 916
doi: 10.1016/j.corsci.2009.11.012
|
[11] |
Lazzari L, Goidanich S, Ormellese M O M, et al. Influence of ac on corrosion kinetics for carbon steel, zinc and copper [A]. Corrosion 2005 [C]. Houston, Texas: NACE International, 2005
|
[12] |
Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 341
|
|
(王晓霖, 闫茂成, 舒韵等. 破损涂层下管线钢的交流电干扰腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 341)
doi: 10.11902/1005.4537.2017.118
|
[13] |
Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution [J]. Int. J. Electrochem. Sci., 2018, 13: 6436
|
[14] |
Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 Steel [J]. J. Nat. Gas Sci. Eng., 2014, 21: 474
|
[15] |
Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 293
|
|
(王新华, 杨国勇, 黄海等. 埋地钢质管道交流杂散电流腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2013, 33: 293)
|
[16] |
Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
doi: 10.11900/0412.1961.2016.00500
|
|
(万红霞, 宋东东, 刘智勇等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575)
doi: 10.11900/0412.1961.2016.00500
|
[17] |
Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 225
|
|
(朱敏, 杜翠薇, 李晓刚等. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 225)
doi: 10.11902/1005.4537.2013.127
|
[18] |
Zhang W W, Xiong Q R, Ji L K, et al. Application and prospect of pipeline steel in China [J]. Welded Pipe Tube, 2011, 34(1): 5
|
|
(张伟卫, 熊庆人, 吉玲康等. 国内管线钢生产应用现状及发展前景[J]. 焊管, 2011, 34(1): 5)
|
[19] |
Xu T. Specification and manufacturing of pipes for the X100 operational trial [J]. Welded Pipe Tube, 2014, 37(6): 68
|
|
(徐婷. X100钢管运行试验的技术标准和制造 [J]. 焊管, 2014, 37(6): 68)
|
[20] |
Liang P, Du C W, Li X G. Simulating and accelerating properties of Ku'erle soil simulated solution [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 97
|
|
(梁平, 杜翠薇, 李晓刚. 库尔勒土壤模拟溶液的模拟性和加速性研究 [J]. 中国腐蚀与防护学报, 2011, 31: 97)
|
[21] |
McCollum B, Ahlborn G H. Influence of frequency of alternating or infrequently reversed current on electrolytic corrosion [J]. Ins. Electr. Eng., 1916, 35: 301
|
[22] |
Nielsen L V. Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. Corrosion 2005 [C]. Houston, Texas: NACE International, 2005
|
[23] |
Xu L Y, Su X, Yin Z X, et al. Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines [J]. Corros. Sci., 2012, 61: 215
doi: 10.1016/j.corsci.2012.04.038
|
[24] |
Xiao H Y, Lalvani S B. A linear model of alternating voltage-induced corrosion [J]. J. Electrochem. Soc., 2008, 155: C69
|
[25] |
Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
doi: 10.1016/j.corsci.2014.04.030
|
[26] |
Zhang X Y, Shi Z Q, Wang F F, et al. Corrosion behavior of X100 pipeline steel in simulated solution of alkaline soil [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 33
|
|
(张秀云, 石志强, 王彦芳等. X100管线钢在盐渍土壤模拟溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 33)
doi: 10.11902/1005.4537.2013.244
|
[27] |
Wu M, Xie F, Chen X, et al. Corrosion behavior of X80 pipeline steel and its weld joint in ku’erle soil environment [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2013, 45(5): 185
|
|
(吴明, 谢飞, 陈旭等. X80管线钢及其焊缝在库尔勒土壤环境中腐蚀行为 [J]. 四川大学学报 (工程科学版), 2013, 45(5): 185)
|
[28] |
Liu C, Guo Y B, Wang D G, et al. Effects of alternating stray current on corrosion behavior of X80 pipeline steel [J]. Corros. Prot., 2015, 36: 213
|
|
(刘骋, 郭岩宝, 王德国等. 交流杂散电流对X80管线钢腐蚀行为的影响 [J]. 腐蚀与防护, 2015, 36: 213)
|
[29] |
Yang Y, Li Z L, Wen C. Effects of alternating current on X70 steel morphology and electrochemical behavior [J]. Acta Metall. Sin., 2013, 49: 43
doi: 10.3724/SP.J.1037.2012.00361
|
|
(杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响 [J]. 金属学报, 2013, 49: 43)
doi: 10.3724/SP.J.1037.2012.00361
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|