Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 151-158    DOI: 10.11902/1005.4537.2019.010
Current Issue | Archive | Adv Search |
Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments
SHEN Shuyang1, WANG Dongsheng1, SUN Shibin2, YANG Ti2, ZHAO Qianjing2, WANG Xin2, ZHANG Yafei2, CHANG Xueting1()
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
Download:  HTML  PDF(6287KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior in artificial seawater of a marine steel plate suitable for extremely cold environments, EH40 steel before and after subzero treatment was studied by means of immersion test, electrochemical polarization curve measurement, electrochemical impedance spectroscopy, X-ray diffractometer and scanning electron microscope. Results showed that uniform corrosion occurred on the steel before subzero treatment, leading to the formation of a dense corrosion product scale on the steel surface. Whereas, pitting corrosion emerged on the steel subjected to subzero treatment at -80 ℃. The mass loss and corrosion current density of the steel before subzero treatment were 1.15 mm/a and 1.244 μA·cm-2, respectively, which increased to 1.33 mm/a and 3.643 μA·cm-2 for the steel after subzero treatment, indicating that the subzero treatment could reduce the corrosion resistance of the steel. The corrosion products for the steels before and after subzero treatment were composed of α-FeOOH, β-FeOOH, and γ-FeOOH. Therefore, low ambient temperature has certain degree of negative impact on the corrosion resistance of marine steel plate in extremely cold environments.

Key words:  low temperature ship steel      corrosion behavior      cooling treatment      immersion test      electrochemistry test     
Received:  12 January 2019     
ZTFLH:  TB304  
Fund: National Key R&D Program of China(2016YFB0300700);Education and Scientific Research Project of Shanghai(19SG46);Natural Science Foundation of Shanghai(17ZR1440900);International Science and Technology Cooperation Program(CU03-29)
Corresponding Authors:  CHANG Xueting     E-mail:  xtchang@shmtu.edu.cn

Cite this article: 

SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 151-158.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.010     OR     https://www.jcscp.org/EN/Y2020/V40/I2/151

Fig.1  Microstructure of EH40 steel
Fig.2  Grain size distribution of low temperature ship steel EH40
Fig.3  Micro morphologies of low temperature ship steel EH40 without (a, b) and with (c, d) -80 ℃ cooling treatment after 72 h immersion (a, c) and then removal of corrosion products (b, d)
Fig.4  SEM images (a, c) and EDS analysis results of arears I (b) and II (d) of corrosion products of EH40 specimens without (a, b) and with (c, d) -80 ℃ cooling treatment after 72 h immersion
Fig.5  XRD patterns of blank EH40 steel and immersed EH40 steel without and with -80 ℃ cooling treatment
Fig.6  Corrosion morphology of EH40 steel with -80 ℃ cooling treatment after immersion
Fig.7  Polarization curves of EH40 steel without and with -80 ℃ cooling treatment after 72 h immersion
Temperature / ℃Ecorr / VBa / mV·dec-1Bc / mV·dec-1Icorr / μA·cm-2Rp / Ω·cm2CORrate
25-0.65210.0233.7881.24425311.3×10-4
-80-0.6459.8352.2823.6439853.8×10-4
Table 1  Fitting results of the polarization curves of EH40 steel without and with -80 ℃ cooling treatment after 72 h immersion
Fig.8  Nyquist plot (a), equivalent circuit (b), phase angle (c) and impedance module (d) plots for EH40 steel without and with -80 ℃ cooling treatment after 72 h immersion
Temperature / °CRs / Ω·cm2QRf / Ω·cm2
Y0 / 10-4 Ω-1·cm2·snn
250.95271.3770.56283.017
-800.75941.2720.49821.857
Table 2  Fitting results of equivalent circuit
Fig.9  Local electrochemical impedance spectroscopies of EH40 steel samples without (a) and with (b) -80 ℃ cooling treatment
Fig.10  Corrosion mechanisms of EH40 steel without (a) and with (b) -80 ℃ cooling treatment after corrosion for 72 h
[1] Devasthale A, Sedlar J, Koenigk T, et al. The thermodynamic state of the Arctic atmosphere observed by AIRS: Comparisons during the record minimum sea ice extents of 2007 and 2012 [J]. Atmos. Chem. Phys., 2013, 13: 7441
[2] Gautier D L, Bird K J, Charpentier R R, et al. Assessment of undiscovered oil and gas in the Arctic [J]. Science, 2009, 324: 1175
[3] Bertelsen R G, Gallucci V. The return of China, post-Cold War Russia, and the Arctic: Changes on land and at sea [J]. Mar. Policy, 2016, 72: 240
[4] Guo N R, Hu M X. A review: Interests brought by the Arctic passage [J]. Ocean Dev. Manag., 2018, 35(10): 51
(郭楠蓉, 胡麦秀. 北极航道利益研究综述 [J]. 海洋开发与管理, 2018, 35(10): 51)
[5] Ke C Q, Wang M M. Seasonal and interannual variation of thinkness and volume of the Arctic sea ice based on Cryosat-2 during 2010-2017 [J]. Acta Oceanol. Sin., 2018, 40(11): 1
(柯长青, 王蔓蔓. 基于CryoSat-2数据的2010-2017年北极海冰厚度和体积的季节与年际变化特征 [J]. 海洋学报, 2018, 40(11): 1)
[6] Kim K J, Lee J H, Park D K, et al. An experimental and numerical study on nonlinear impact responses of steel-plated structures in an Arctic environment [J]. Int. J. Impact Eng., 2016, 93: 99
[7] Li Z H, Shi J P, Tang A M. Experimental research on the brittle fracture mechanism in metal material [J]. Chin. J. Appl. Mech., 2012, 29: 48
(李智慧, 师俊平, 汤安民. 金属材料脆性断裂机理的实验研究 [J]. 应用力学学报, 2012, 29: 48)
[8] Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
(郭铁明, 张延文, 秦俊山等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319)
[9] Mao H Y, Cai Q W, Wu H B, et al. Effect of alloy element and carbon content on corrosion behavior of E36 ship plate steel [J]. Corros. Prot., 2013, 34: 499
(毛红艳, 蔡庆伍, 武会宾等. 合金元素和碳含量对E36船板钢腐蚀行为的影响 [J]. 腐蚀与防护, 2013, 34: 499)
[10] Chen C, Wu J J, Zhang D. Effects of sulfate-reducing bacteria on marine corrosion of weld joints of EH40 [J]. Equip. Environ. Eng., 2018, 15(10): 51
(陈超, 吴佳佳, 张盾. 硫酸盐还原菌对EH40焊接钢海水腐蚀的影响 [J]. 装备环境工程, 2018, 15(10): 51)
[11] Guo Y B, Li C, Liu Y C, et al. Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution [J]. Int. J. Miner. Metall. Mater., 2015, 22: 604
[12] Hao X H, Dong J H, Wei J, et al. Influence of microstructure of AH32 corrosion resistant steel on corrosion behavior [J]. Acta Metall. Sin., 2012, 48: 534
(郝雪卉, 董俊华, 魏洁等. AH32耐蚀钢显微组织对其腐蚀行为的影响 [J]. 金属学报, 2012, 48: 534)
[13] Zha X Q. Corrosion behavior of 10NiCrMo steel in laboratory simulated ocean circumstance experiments [J]. Iron Steel, 2010, 45(10): 75
(查小琴. 10NiCrMo钢在室内模拟海洋环境试验中的腐蚀行为 [J]. 钢铁, 2010, 45(10): 75)
[14] Maiti D, Devi P S. Selective formation of iron oxide and oxyhydroxide nanoparticles at room temperature: Critical role of concentration of ferric nitrate [J]. Mater. Chem. Phys., 2015, 154: 144
[15] Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 274
(孙永伟, 钟玉平, 王灵水等. 低合金高强度钢的耐模拟工业大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 274)
[16] Yang Y L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
[17] Zhao J M, Zuo Y, Xiong J P. Corrosion behavior of mild steel in simulated solutions within pits and crevices [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 193
(赵景茂, 左禹, 熊金平. 碳钢在点蚀/缝隙腐蚀闭塞区模拟溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2002, 22: 193)
[18] Qian A, Yang X H, Jin P, et al. Micro-zone electrochemical behavior of AerMet100 steel in salt spray environment under Cl- [J]. Equip. Environ. Eng., 2019, 16(10): 88
(钱昂, 杨晓华, 金平等. Cl-作用下AerMet100钢在盐雾环境中的微区电化学行为 [J]. 装备环境工程, 2019, 16(10): 88)
[19] Nazarov A, Le Bozec N, Thierry D. Assessment of steel corrosion and deadhesion of epoxy barrier paint by scanning Kelvin probe [J]. Prog. Org. Coat., 2018, 114: 123
[1] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[7] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[8] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[9] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[10] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[11] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[12] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[14] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[15] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
No Suggested Reading articles found!