Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (2): 185-190    DOI: 10.11902/1005.4537.2015.055
Orginal Article Current Issue | Archive | Adv Search |
Determination of Representative Ground-water for Corrosion Assessment of Candidate Materials Used in Beishan Area Preselected for High-level Radioactive Waste Disposal Repository
Min ZHENG1,2,Qichao ZHANG1,2,Yanliang HUANG1(),Dongzhu LU1,Xiuming YU1,2,Yuemiao LIU3
1. Institute of Oceanology,Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. CNNC Beijing Research Institute of Uranium Geology, Beijing 100029, China
Download:  HTML  PDF(658KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the data of previous analysis of groundwater samples by bore holing and the data of the field survey in Beishan area, the chemical compositions of the typical samples collected from ground waters in the desired sites were summarized in this paper. It can be drawn after a comparative evaluation of the content of the main anions and cations of ground waters that the groundwater sample collected from the third borehole in the Jiujing block can be considered as the representative of ground waters of Beishan area, therefore, which may be adopted in the near future as a medium for corrosion evaluation of candidate materials to provide a near-field chemical environment around the disposal waste container in high-level radioactive waste disposal repository of Beishan area.

Key words:  Beishan area      groundwater composition      geological disposal      container      corrosion     

Cite this article: 

Min ZHENG,Qichao ZHANG,Yanliang HUANG,Dongzhu LU,Xiuming YU,Yuemiao LIU. Determination of Representative Ground-water for Corrosion Assessment of Candidate Materials Used in Beishan Area Preselected for High-level Radioactive Waste Disposal Repository. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 185-190.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.055     OR     https://www.jcscp.org/EN/Y2016/V36/I2/185

Fig.1  Location map of the study area
Ion Na+ K+ Ca2+ Mg2+ HCO3- Cl- SO42- NO3-
Reference[8] 631.00 58.66 154.88 42.45 201.64 645.39 750.98 0.00
Reference[12] 1696.00 60.60 281.70 211.60 141.50 1869.40 2836.50 13.90
Monitoring well 51#[20,21] 47.83 8.88 73.88 8.98 103.70 61.35 161.80 10.42
BS03[22] 1101.00 14.40 241.00 51.70 133.00 1159.00 1418.00 19.10
BS03-400 m[23] 1036.00 15.95 183.00 50.40 130.90 1193.00 941.10 32.60
BS04[18] 1359.90 17.60 351.80 53.90 254.80 1801.40 1314.10 0.00
BS04-400 m[19] 1638.00 5.44 349.60 71.67 120.60 1701.00 1980.00 63.60
BS05[24] 798.00 4.80 177.00 31.40 0.60 771.00 718.00 8.64
Table 1  Related analysis and test data and reference data about the contents of chemical components of groundwater in Beishan area (mg/ L)
Ion Na+ K+ Ca2+ Mg2+ HCO3- Cl- SO42- NO3-
BS03-1 1149.20 16.80 221.10 56.40 92.10 1271.00 1327.00 20.60
BS03-2 1114.30 18.40 190.60 54.00 81.00 1310.00 1116.00 41.60
BS03-3 1246.70 24.80 246.60 61.70 116.00 1203.00 1336.00 19.10
Mean value 1170.07 20.00 219.43 57.37 96.37 1261.33 1259.67 27.10
BS05-1 484.00 8.81 128.00 24.00 200.00 557.00 538.00 14.70
BS05-2 604.00 10.70 203.00 37.70 106.00 716.00 754.00 6.28
BS05-3 646.00 11.10 205.00 38.50 113.00 762.00 815.00 3.95
Mean value 578.00 10.20 178.67 33.40 139.67 678.33 702.33 8.31
BS15-1 887.00 15.00 158.00 33.30 142.00 862.00 1063.00 3.60
BS15-2 892.00 8.89 170.00 39.20 148.00 989.00 1155.00 5.50
BS15-3 921.00 10.10 181.00 42.80 150.00 1006.00 1220.00 0.00
Mean value 900.00 11.33 169.67 38.43 146.67 952.33 1146.00 3.03
BS15-Z1 507.00 3.15 92.50 19.40 226.00 485.00 553.00 0.00
BS15-Z2 494.00 2.91 108.00 19.10 232.00 511.00 543.00 0.00
BS15-Z3 494.00 3.81 86.30 19.30 236.00 476.00 511.00 0.00
BS15-Z4 524.00 4.69 56.20 20.90 319.00 472.00 465.00 0.00
BS15-Z5 631.00 4.13 110.00 22.10 177.00 656.00 595.00 9.00
BS15-Z6 363.00 3.00 41.10 11.80 240.00 300.00 318.00 9.95
BS15-Z7 583.00 5.31 153.00 26.50 206.00 620.00 678.00 8.80
Mean value 513.71 3.86 92.44 19.87 233.71 502.86 523.29 3.96
Table 2  Partial data about the chemical components of groundwater in Beishan[15] (m g/ L)
Fig.2  Major ion contents of groundwater in Beishan area
Ion Na+ K+ Ca2+ Mg2+ HCO3- Cl- SO42- NO3-
Simulated solution 1143.85 20.00 208.72 55.76 100.52 1291.33 1289.67 27.10
BS03 groundwater 1170.07 20.00 219.43 57.37 96.37 1261.33 1259.67 27.10
Differential By content -26.22 0.00 -10.71 -1.61 +4.15 +30.00 +30.00 0.00
By percentage 2.24% 0.00 4.88% 2.80% 4.30% 2.38% 2.38% 0.00
Table 3  Comparison of chemical components of simulated solution and practical BS03 groundwater (mg/L)
[1] Lu A Z.Annoying nuclear waste[J]. Popul. Sci., 2011, 75: 7
[1] (陆安洲. 核废料令人头痛[J]. 科学大众, 2011, 75: 7)
[2] Qu W P.Nuclear disposal concerns human security[J]. Security, 2008, 29(2): 24
[2] (屈伟平. 核康料处置, 关系人类安全[J]. 安全, 2008, 29(2): 24)
[3] Duquette D J, Latanision R M, Di Bella C A W, et al. Corrosion issues related to disposal of high-level nuclear waste in the Yucca mountain repository-peer reviewer's perspective[J]. Corrosion,2009, 65(4): 272
[4] Bennett D G, Gens R.Overview of european concepts for high-level waste and spent fuel disposal with special reference waste container corrosion[J]. J. Nucl. Mater., 2008, 379: 1
[5] Li X.Study on solute transport based on the deep geological disposal of HLW [D]. Hangzhou: Zhejiang University, 2009
[5] (李寻. 基于高放废物深地质处置的溶质运移研究 [D]. 杭州: 浙江大学, 2009)
[6] Zhao C H, Li G M, Guo Y H, et al.Regional groundwater flow pattern in Beishan area, Gansu province, China[J]. J. Eng. Geol., 2007, 15(2): 174
[6] (赵春虎, 李国敏, 郭永海等. 甘肃北山区域地下水流动特征[J]. 工程地质学报, 2007, 15(2): 174)
[7] Guo Y H, Wang J, Wang Z M, et al.Groundwater formation and distribution in the preselected Beishan area of repository for high level radioactive waste[J]. J. Geotech. Invest. Surv., 2008, 36(S1): 194
[7] (郭永海, 王驹, 王志明等. 高放废物处置库甘肃北山预选区地下水资源的分布和形成[J]. 工程勘察, 2008, 36(S1): 194)
[8] Guo Y H, Yang T X, Liu S F.Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository[J]. Uranium Geol., 2001, 17(3): 184
[8] (郭永海, 杨天笑, 刘淑芬. 高放废物处置库甘肃北山预选区水文地质特征研究[J]. 铀矿地质, 2001, 17(3): 184)
[9] Guo Y H, Wang J, Xiao F, et al.Groundwater formation in Beishan(Gansu) preselected area of high-level radioactive waste disposal repository[J]. Geol. J. China Univ., 2010, 16(1): 13
[9] (郭永海, 王驹, 肖丰等. 高放废物处置库甘肃北山预选区地下水的形成[J]. 高校地质学报, 2010, 16(1): 13)
[10] Guo Y H, Wang J, Wang Z M, et al.The continuously determination of inorganic and organic carbon from samples for uranium geology by non-waterdrop decides[J]. Uranium Geol., 2010, 26(1): 46
[10] (郭永海, 王驹, 王志明等. 高放废物处置库甘肃北山预选区地下水位动态特征[J]. 铀矿地质, 2010, 26(1): 46)
[11] Dong Y H, Li G M, Li M.Numerical modeling of the regional ground water flow in Beishan area, Gansu Province[J]. Chin. Sci. Bull., 2009, 54(23): 3790
[11] (董艳辉, 李国敏, 黎明. 甘肃北山大区域地下水流动模拟[J]. 科学通报, 2009, 54(23): 3790)
[12] Wang H L.Study on water flow modeling and seepage characteristics of rock of Beishan preselected area for China's high level radioactive waste repository [D]. Beijing: Beijing Research Institute of Uranium Geology, 2014
[12] (王海龙. 高放废物处置库北山预选区区域地下水流模拟及岩体渗透特征研究 [D]. 北京: 核工业北京地质研究院, 2014)
[13] Xiao F, Wang J, Guo Y H, et al.Progress of hydrogeological studies in Beishan preselected area of disposal repository for high level radioactive waste in China[J]. Uranium Geol., 2011, 27(3): 185
[13] (肖丰, 王驹, 郭永海等. 中国高放废物处置库甘肃北山预选区水文地质研究进展[J]. 铀矿地质, 2011, 27(3): 185)
[14] Wang J.Geological disposal of high level radioactive waste in China: Review and prospect[J]. Uranium Geol., 2009, 25(2): 71
[14] (王驹. 高放废物深地质处置: 回顾与展望[J]. 铀矿地质, 2009, 25(2): 71)
[15] Zhou Z C.Deep groundwater formation mechanism of HLW repository in Beishan preselected area [D]. Beijing: Beijing Research Institute of Uranium Geology, 2014
[15] (周志超. 高放废物处置库北山预选区深部地下水成因机制研究[D]. 北京: 核工业北京地质研究院, 2014)
[16]
[17] Pang Z H, Guo Y H, Su R, et al.Experimental study on cycle property of groundwater in fractured granite in Beishan, China[J]. Chin. J. Rock Mech. Eng., 2007, 26(2): 3954
[17] (庞忠和, 郭永海, 苏锐等. 北山花岗岩裂隙地下水循环属性试验研究[J]. 岩石力学与工程学报, 2007, 26(2): 3954)
[18] Guo Y H, Wang J, Lv C H, et al.Chemical characteristics of groundwater and water-rock interaction: Modeling of the Yemaquan preselected area for China's high level radioactive waste repository[J]. Earth Sci. Front., 2005, 12(Sl): 117
[18] (郭永海, 王驹, 吕川河等. 高岗废物处置库甘肃北山野马泉预选区地下水化学特征及水-岩作用模拟[J]. 地学前缘, 2005, 12(S1): 117)
[19] Guo Y H, Wang J, Liu S F, et al.Groundwater chemical characteristics of the Yemaquan section-the preselected area for China's high-level radioactive waste repository[J]. Atom. Energy Sci. Technol., 2004, 38(Sl): 143
[19] (郭永海, 王驹, 刘淑芬等. 高放废物处置库预选区野马泉岩体地下水化学特征[J]. 原子能科学技术, 2004, 38(S1): 143)
[20] Yang S, Wang Y L, Zhang Z C, et al.Form and distribution of Pu in underground water in Beishan, Gansu, and its influence factors[J]. Gold, 2014, 35(4): 75
[20] (杨森, 王永利, 张志程等. 甘肃北山地下水中Pu的形态分布及影响因素[J]. 黄金, 2014, 35(4): 75)
[21] Sun M, Chen T, Tian W Y, et al.Calculation and analysis of the solubility of Neptunium in Beishan well 51# groundwater[J]. J. Nucl. Radiochem., 2011, 33(2): 71
[21] (孙茂, 陈涛, 田文宇等. 镎在北山五一井水中的溶解度计算分析[J]. 核化学与放射化学, 2011, 33(2): 71)
[22] Jiang T, Yao J, Wang B, et al.Solubility of Np in Beishan groundwater at different temperatures[J]. J. Nucl. Radiochem., 2011, 33(2): 77
[22] (姜涛, 姚军, 王波等. 不同温度下Np(VI)在北山地下水中的溶解度[J]. 核化学与放射化学, 2011, 33(2): 77)
[23] Zhou J, Wang J, Su R, et al.Speciation of uranium an other elements saturation index of uranium minerals in the underground water from the granite fracture with reductive condition [A]. The Second Waste Underground Disposal Seminar[C]. Dunhuarg: 2008
[23] (周佳, 王驹, 苏锐等. 还原氛围下U等元素的存在形式及矿物饱和指数的研究 [A]. 第二届废物地下处置学术研讨会[C]. 敦煌: 2008)
[24] Liu Y M, Wang J, Cao S F, et al.A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China[J]. Rock Soil Mech., 2013, 34(10): 2756
[24] (刘月妙, 王驹, 曹胜飞等. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究[J]. 岩土力学, 2013, 34(10): 2756)
[25] Wang C X.Study of the behavior of stress corrosion of X80 steel in Yingtan soil environment [D]. Fushun: Liaoning Shihua University, 2010
[25] (王成祥. X80钢在鹰潭土壤环境中的应力腐蚀行为研究 [D]. 抚顺: 辽宁石油化工大学, 2010)
[26] Wang Y, Yu H Y, Cheng Y, et al.Corrosion behavior of X80 steel in different simulated soil solution[J]. J. Mater. Eng., 2012, (1): 25
[26] (王莹, 俞宏英, 程远等. X80钢在不同土壤模拟溶液中的腐蚀行为[J]. 材料工程, 2012, (1): 25)
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!