Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (2): 177-184    DOI: 10.11902/1005.4537.2015.079
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Inhibition of Equisetum Ramosissimum Extractive for Carbon Steel in Hydrochloric Acid Solution
Wen CHEN(),Chunping GUAN,Shenming YANG,Xiaoan HU
Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong 675000, China
Download:  HTML  PDF(924KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inhibition effect of Equisetum ramosissimum extractive (ERE), extracted by hot water extraction method, on the corrosion of Q235 steel in 1 molL-1 HCl solution was investigated by means of polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that ERE could effectively inhibited the steel corrosion, and acted as a mixed-type inhibitor with predominant control of the cathodic reaction. The inhibition efficiency increased with increasing dose of the extractive and was stable within the range of experimental temperature (20~50 ℃). By fitting the EIS data, it was found that the adsorption of ERE molecules on the steel surface obeyed both the Langmuir and the Dhar-Flory-Huggins adsorption isotherms. Spectroscopic analysis and scanning electron microscope observation confirmed existence of a adsorbed film of ERE on the steel surface.

Key words:  Q235 steel      equisetum ramosissimum      polarization curve      electrochemical impedance spectroscopy     

Cite this article: 

Wen CHEN,Chunping GUAN,Shenming YANG,Xiaoan HU. Corrosion Inhibition of Equisetum Ramosissimum Extractive for Carbon Steel in Hydrochloric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 177-184.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.079     OR     https://www.jcscp.org/EN/Y2016/V36/I2/177

Fig.1  Polarization curves of Q235 steel in 1 molL-1 HCl solutions containing various concentrations of ERE at 20 ℃ (a), 30 ℃ (b), 40 ℃ (c) and 50 ℃ (d)
Temperature / ℃ c / mgL-1 Ecorr / mV ba / mVdec-1 bc / mVdec-1 Icorr / μAcm-2 IE / %
20 Blank -432 97.9 124.8 1265
30 -457 68.3 101.7 241 81.0
60 -453 69.5 105.7 203 84.0
150 -449 74.6 109.8 174 86.2
300 -467 73.8 120.0 138 89.1
600 -464 74.4 136.0 128 89.9
30 Blank -439 103.2 135.7 2369 ---
30 -450 72.4 94.4 350 85.2
60 -455 74.6 100.1 327 86.2
150 -471 72.6 100.9 178 92.5
300 -475 74.2 104.3 156 93.4
600 -492 83.2 107.6 150 93.7
40 Blank -423 102.5 139.9 5772 ---
30 -429 82.9 141.2 188 67.3
60 -438 66.4 112.5 653 88.7
150 -450 68.2 109.9 378 93.4
300 -465 69.7 105.7 339 94.1
600 -470 74.7 107.3 281 95.1
50 Blank -398 101.3 131.2 6335 ---
30 -411 82.1 129.5 3005 52.6
60 -430 89.3 131.2 1818 71.3
150 -441 69.5 116.2 997 84.3
300 -448 78.3 118.8 854 86.5
600 -448 85.7 118.4 779 87.7
Table 1  Polarization parameters for Q235 steel in 1 molL-1 HCl containing different concentrations of ERE at different temperatures
Fig.2  Nyquist plots for Q235 steel in 1 molL-1 HCl solutions containing various concentrations of ERE at 20 ℃ (a), 30 ℃ (b), 40 ℃ (c) and 50 ℃ (d)
Fig.3  Equivalent circuit modes for Q235 steel in 1 molL-1 HCl solutions without (a) and with(b) ERE
Temperature / ℃ c / mgL-1 Cdl / μFcm-2 Rct / Ωcm2 Cf / mFcm-2 Rf / Ωcm2 IE / %
20 Blank 257 22.7 --- --- ---
30 117 117.4 18.9 15.6 82.9
60 102 143.9 13.9 29.2 86.8
150 86 175.6 25.2 56.3 90.2
300 66 249.6 8.6 72.9 92.9
600 61 283.2 5.8 101.4 94.1
30 Blank 334 14.8 --- --- ---
30 175 40.8 10.9 17.2 74.5
60 112 78.3 37.2 10.5 83.3
150 64 144.5 17.0 22.2 91.1
300 52 162.7 23.3 38.1 92.6
600 44 187.6 11.0 53.6 93.9
40 Blank 574 8.3 --- --- ---
30 201 24.73 15.6 2.2 69.1
60 132 49.4 22.9 4.7 84.6
150 76 67.9 13.7 9.9 89.3
300 52 83.8 10.2 16.9 91.7
600 47 92.9 2.3 22.6 92.8
50 Blank 761 4.6 --- --- ---
30 375 9.0 20.9 1.4 55.7
60 161 20.9 22.3 1.9 79.8
150 109 27.4 12.8 4.9 85.7
300 77 36.2 10.7 8.6 89.7
600 68 42.9 19.4 12.0 91.6
Table 2  Impedance parameters for Q235 steel in 1 molL-1 HCl solutions containing different concentrations of ERE at different temperatures
Fig.4  Fitted plots from Langmuir (a) and Dhar-Flory-Huggins (b) adsorption isotherms
Temperature / ℃ Adsorption isotherm model R2 Kads / Lmg-1 x ΔGadsθ / kJmol-1
20 Langmiur 0.999 0.162 --- -29.2
Dhar-Flory-Huggins 0.983 1.077 3.01 -33.8
30 Langmiur 0.999 0.119 --- -29.4
Dhar-Flory-Huggins 0.982 2.367 3.53 -37.0
40 Langmiur 0.999 0.111 --- -30.2
Dhar-Flory-Huggins 0.973 2.151 3.79 -37.9
50 Langmiur 0.999 0.063 --- -29.7
Dhar-Flory-Huggins 0.985 0.250 2.74 -33.4
Table 3  Fitted parameters from Langmuir and Dhar-Flory-Huggins models
Fig.5  FTIR spectrum of adsorption film of ERE
Fig.6  UV spectra of 1 molL-1 HCl solution with 150 gL-1 ERE before and after Q235 steel immersion for 24 h
Fig.7  Surface morphologies of Q235 steel after immersion for 8 h in 1 molL-1 HCl solutions without (a) and with (b) 150 mgL-1 ERE
[1] He X K, Chen B Z, Zhang Q F.Present development and prospect of inhibitor[J]. Mater. Prot., 2003, 36(8): 1
[1] (何新快, 陈白珍, 张钦发. 缓蚀剂的研究现状与展望[J]. 材料保护, 2003, 36(8): 1)
[2] Issaadi S, Douadi T, Zouaoui A, et al.Novel thiophene symmetrical Schiff base compounds as corrosion inhibitor for mild steel in acidic media[J]. Corros. Sci., 2011, 53(4): 1484
[3] Li X X, Yang W Z.Inhibition of 1-propyl-2-methyl-3-alkyl benzimidazole on Q235 steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 168
[3] (李相旭, 杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2012, 32(2): 168)
[4] Lebrini M, Traisnel M, Lagrenée M, et al.Inhibitive properties, adsorption and a theoretical study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid[J]. Corros. Sci., 2008, 50(2): 473
[5] Abdel-Gaber M, Ab-El-Nabey B A, Sidahmed I M, et al. Inhibitive action of some plant extracts on the corrosion of steel in acidic media[J]. Corros. Sci., 2006, 48(9): 2765
[6] Chauhan L R, Gunasekaran G.Corrosion inhibition of mild steel by plant extracts in dilute HCl[J]. Corros. Sci., 2007, 49(3): 1143
[7] Zheng X W, Gong M, Zeng X G, et al.Inhibition of extractives from chinnamomum camphor leaves on carbon steel in H2SO4 solution[J]. Corros. Sci. Prot. Technol., 2012, 24(1): 42
[7] (郑兴文, 龚敏, 曾宪光等. 樟树叶提取液在硫酸介质中对碳钢的缓蚀作用[J]. 腐蚀科学与防护技术, 2012, 24(1): 42)
[8] Emeka E O, Demian I N, Maduabuchi A C, et al.Characterization and experimental and computational assessment of kola nitida extract for corrosion inhibiting efficacy[J]. Ind. Eng. Chem. Res., 2014, 53(14): 5886
[9] Neda M-D, Natasa S, Jelena C, et al.Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants[J]. Molecules, 2008, 13(7): 1455
[10] Yu H W, Yan M M, Yang Z, et al.Chemical constituents of Equisetum ramosissimum[J]. Chin. Trad. Herbal Drugs, 2011, 42(3): 450
[10] (于红威, 严铭铭, 杨智等. 节节草化学成分的研究[J]. 中草药, 2011, 42(3): 450)
[11] Bayola E, Kayakırılmaz K, Erbil M.The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel[J]. Mater. Chem. Phys., 2007, 104(1): 74
[12] Wang J, Cao C N, Chen J J, et al.Anodic desorption of inhibitors 1. the phenomenon of anodic desorption of inhibitors[J]. J. Chin. Soc. Corros. Prot., 1995, 15(4): 241
[12] (王佳, 曹楚南, 陈家坚等. 缓蚀剂阳极脱附现象的研究I.缓蚀剂阳极脱附现象[J]. 中国腐蚀与防护学报, 1995, 15(4): 241)
[13] Saleh M M, Atia A A.Effects of structure of the ionic head of cationic surfactant on its inhibition of acid corrosion of mild steel[J]. Appl. Electrochem., 2006, 36(8): 899
[14] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-l,3,4-thiadiazole on mild steel in hydrochloric acid media [J]. Colloid. Surf., 2008, 312(1)A: 7
[15] Lebrini M, Lagrenée M, Vezin H, et al.Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds[J]. Corros. Sci., 2007, 49(5): 2254
[16] Abelev E, Starosvetsky D, Ein-Eli Y.Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts[J]. Langmuir, 2007, 23(22): 11281
[17] Popova A, Raicheva S, Sokolova E, et al.Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Langmuir, 1996, 12(8): 2083
[18] Lorenz W J, Mansfeld F.Determination of corrosion rates by electrochemical DC and AC methods[J]. Corros. Sci., 1981, 21(9/10): 647
[19] Umoren S A, Gasem Z M, Obot I B.Natural products for material protection: Inhibition of mild steel corrosion by date palm seed extracts in acidic media[J]. Ind. Eng. Chem. Res., 2013, 52(42): 14855
[20] Hamdy H H.Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives Part II: Time and temperature effects and thermodynamic treatments[J]. Electrochim. Acta, 2007, 53(4): 1722
[21] Solmaz R, S?ahin E A, Do?ner A, et al. The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution[J]. Corros. Sci., 2011, 53(10): 3231
[22] Dhar H P, Conway B E, Joshi K M.On the form of adsorption isotherms for substitutional adsorption of molecules of different sizes[J]. Electrochim. Acta, 1973, 18(11): 789
[1] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[4] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[8] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[15] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
No Suggested Reading articles found!