Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (1): 41-46    DOI:
Current Issue | Archive | Adv Search |
Effect of Urea on Condensates Corrosion of Stainless Steels in Simulated Automotive Exhaust Environments
WANG Shidong, HAN Peihong, MA Rongyao, LI Moucheng, SHEN Jianian
Institute of Materials, Shanghai University, Shanghai 200072, China
Download:  PDF(6295KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high-temperature exhaust gas oxidation-acidic condensates immersion cyclic test was used to simulate diesel exhaust after-treatment environments. After oxidation at 400 ℃ in simulated exhaust gas environments with or without urea, the corrosion behavior of 304 and 439 stainless steels was investigated in the condensate solutions. The electrochemical test results indicate that 304 stainless steels oxidized in the presence or absence of urea show passive corrosion characteristics in the condensate solutions, whereas 439 stainless steels oxidized under both conditions tend to active corrosion. Corrosion product films on the specimen surfaces may be damaged during the oxidation and immersion cycles, which give rise to the formation of some pits on the specimens. As urea is added into the exhaust gas, it can promote the oxidation processes of both 304 and 439 stainless steel. As a result, the general corrosion processes of both stainless steels are accelerated by the urea addition, but the localized corrosion processes are inhibited to a certain extent.

Key words:  automotive exhaust system      corrosion      SCR      urea      stainless steel     
ZTFLH:  TG174.2  

Cite this article: 

WANG Shidong,HAN Peihong,MA Rongyao,LI Moucheng,SHEN Jianian. Effect of Urea on Condensates Corrosion of Stainless Steels in Simulated Automotive Exhaust Environments. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 41-46.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I1/41

[1] Girard J W, Montreuil C, Kim J, et al. Technical advantages of vanadium SCR systems for diesel NOx control in emerging markets[J]. SAE Int. J. Fuels Lubr., 2009, 1(1): 488-494
[2] Koebel M, Elsener M, Kleemann M. Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines[J]. Catal. Today, 2000, 59(3-4): 335-345
[3] Koebel M, Strutz E O. Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects[J]. Ind. Eng. Chem. Res., 2003, 42(10): 2093-2100
[4] Schaber P M, Colson J, Higgins S, et al. Thermal decomposition (pyrolysis) of urea in an open reaction vessel[J]. Thermochim. Acta, 2004, 424(1-2): 131-142
[5] Inoue Y, Kikuchi M. Present and future trends of stainless steel for automotive exhaust system [J]. Nippon Steel Tech. Report, 2003, 88: 62-69
[6] Floyd R, Kotrba A, Martin S, et al. Material corrosion investigations for urea SCR diesel exhaust systems[A]. SAE 2009 Commercial Vehicle Engineering Congress & Exhibition[C]. Rosemont, doi: 10.4271/2009-01-2883
[7] Nockert J, Nyborg L, Norell M. Corrosion of stainless steels in simulated diesel exhaust environment with urea[J]. Mater. Corros., 2011, doi: 10.1002/maco.201005783
[8] Nockert J, Norell M. Corrosion at the urea injection in SCR-system during component test[J]. Mater. Corros., 2011, DOI: 10.1002/maco.201005983
[9] AK Steel Corporation. Aluminized steel type 1 stainless 409 and 439 [A]. Product Data Bulletin [C]. West Chester, 2007: 1-6
[10] Wang J, Cao C N, Lin H C. Features of AC impedance of pitting corroded electrodes during pits propagation[J]. J. Chin. Soc. Corros. Prot., 1989, 9(4): 271-279
(王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗频谱特征[J].中国腐蚀与防护学报, 1989, 9(4): 271-279)
[11] Wei B M. Metal Corrosion Theory and Application [M]. Beijing: Chemical Industry Press, 1984
(魏宝明.金属腐蚀理论及应用[M]. 北京:化学工业出版社, 1984)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!