Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (1): 36-40    DOI:
Current Issue | Archive | Adv Search |
Effects of PO43- on Pitting Nucleation of 304 Stainless Steel in Chloride Solutions
SHI Huiying, TANG Yumiung, ZUO Yu
School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Download:  PDF(5404KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of PO43- on nucleation and growth of metastable and stable pitting were investigated by cycling potentiodynamic polarization. Both metastable pitting potential Em and stable pitting potential Eb increase with the increasing of PO43- concentration. Higher PO43- concentration results in lower average growth rate and peak current of metastable pitting, hence inhibits the nucleation of stable pitting. However, as PO43- concentration increases, the repassivation potential of stable pitting Ep decreases, indicating that the repassivation of the pit is retarded. The reason is explained by the deposition of phosphate film around the pit mouth, which may promote the growth stability of the pit.

Key words:  stainless steel      pitting      metastable pitting      PO43- nucleation      growth     
ZTFLH:  TG172  

Cite this article: 

SHI Huiying,TANG Yumiung,ZUO Yu. Effects of PO43- on Pitting Nucleation of 304 Stainless Steel in Chloride Solutions. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 36-40.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I1/36

[1] Punckt C, Bolscher M, Rotermund H H, et al. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon [J]. Science, 2004, 305: 1133-1136
[2] Vera Cruz R P, Nishikata A, Tsuru T. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environments [J]. Corros. Sci., 1998, 40(1): 125-139
[3] Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296-4306
[4] Mikhailov A S, Scully J R, Hudson J L. Nonequilibrium collective phenomena in the onset of pitting corrosion [J]. Surf. Sci., 2009, 603: 1912-1921
[5] Qu Q, Li L, Bai W, et al. Sodium tungstate as a corrosion inhibitor of cold rolled steel in peracetic acid solution [J]. Corros. Sci., 2009, 51: 2423-2428
[6] Igual Mu?oz A, García Antón J, Gui?ón J L, et al. Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques [J]. Corros. Sci., 2007, 49: 3200-3225
[7] Mu G N, Li X H, Qu Q, et al. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution [J]. Corros. Sci., 2006, 48: 445-459
[8] Reffass M, Sabot R, Jeannin M, et al. Effects of phosphate species on localised corrosion of steel in NaHCO3 + NaCl electrolytes [J]. Electrochim. Acta, 2009, 54: 4389-4396
[9] Moraes S R, Huerta-Vilca D, Motheo A J. Corrosion protection of stainless steel by polyaniline electrosynthesized from phosphate buffer solutions [J]. Prog. Org. Coat., 2003, 48: 28-33
[10] Sieber I V, Hildebrand H, Virtanen S, et al. Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4 [J]. Corros. Sci., 2006, 48: 3472-3488
[11] Borrás C A, Romagnoli R, Lezna R O. In-situ spectroelectrochemistry (UV – visible and infrared) of anodic films on iron in neutral phosphate solutions [J]. Electrochim. Acta, 2000, 45: 1717-1725
[12] Zhao J M, Zuo Y. Effects of three anions on pit propagation of mild steel in NaHCO3-NaC solutions [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3):174-178
(赵景茂,左禹. 三种缓蚀性阴离子对碳钢在NaHCO3-NaCl溶液中点蚀的抑制作用 [J]. 中国腐蚀与防护学报,2004, 24(3):174-178)
[13] Bastos A C, Ferreira M G, Sim?es A M. Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET [J]. Corros. Sci., 2006, 48: 1500–1512
[14] Wang H T, Zhao J M, Zuo Y, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2002,2(4): 202-206
(王海涛,赵景茂,左禹等. 几种阴离子对316L不锈钢亚稳态孔蚀行为的影响 [J]. 中国腐蚀与防护学报, 2002, 2(4): 202-206)
[15] Sinko J. Challenges of chromate inhibitor pigments replacement in organic coatings [J]. Prog. Org. Coat., 2001, 42: 267-282
[16] Fujioka E, Nishihara H, Aramaki K. The inhibition of passive film breakdown on iron in a borate buffer solution containing chloride ions by mixtures of hard and soft base inhibitors [J]. Corros. Sci., 1996, 3(10): 1669-1679
[17] Yamaguchi M, Nishihara H, Aramaki K. The inhibition of pit growth on an iron surface in a borate buffer solution containing chloride ion by inhibitors classified as soft bases in the HSAB principle [J]. Corros. Sci., 1995, 37(4): 571-585
[18] Zhu Y B, Shen Z C, Zhang C F, et al. Electrochemical Data Handbook [M]. Changsha: Hunan Science and Technology Press, 1984
(朱元保,沈子琛,张传福等. 电化学数据手册 [M]. 长沙: 湖南科学技术出版社, 1984)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[10] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[11] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[12] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[13] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[14] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[15] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
No Suggested Reading articles found!