Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (4): 343-348    DOI:
Current Issue | Archive | Adv Search |
INFLUENCE OF VIBRIO ON CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 45 STEEL IN SEAWATER
WU Jinyi, LUO Qi, XIAO Weilong, CHAI Ke, Cao Yang  
Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, Material and Chemical Engineering College, Hainan University, Haikou 570228
Download:  PDF(1120KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  It has been found that microbiologically influenced corrosion (MIC) plays a significant role in corrosion process of steels exposed in marine environment. Microbe can produce pitting, crevice corrosion, selective dealloying and stress-oriented hydrogen-induced cracking, which accelerates both localized and average corrosion rates of carbon steel. Wu et al. reported that when the corrosion time is 365 d, the average corrosion depth of 25 steel in natural seawater is 2.6 times higher than that in sterile seawater, and localized attack is also observed on the specimens immersed in natural seawater. Preliminary work also shows that Vibrio is the key component of microbe in the corrosion product. The research on the single effect of Vibrio on the corrosion behaviors and mechanical properties of metal is insufficient up to now. In this work, Vibrio is cultured in seawater. 45 steel coupons are immersed in three different mediums in tropic condition: natural seawater, sterile seawater and Vibrio-containing seawater. The results show that instead of culturing in culture medium, Vibrio can be cultured in seawater to a high concentration, which avoid the corrosion inhibitor behavior from culture medium and near natural corrosion condition. The activity of Vibrio at the interface accelerates the average corrosion rate for 45 steel. Coupons immersed in natural seawater show faster average corrosion rate than in Vibrio-containing seawater due to microbial synergy. Vibrio is acid-producing bacteria which can decrease the local pH value and cause significant local corrosion. Local corrosion in the surface of metal would lead to stress concentration on the local corrosion site and cut down the tensile strength of material.
Key words:  seawater      Vibrio      45 steel      corrosion      mechanical properties     
Received:  16 September 2011     
ZTFLH: 

TG172.5

 
Corresponding Authors:  WU Jinyi     E-mail:  wujinyi1976@yahoo.com.cn

Cite this article: 

WU Jinyi, LUO Qi, XIAO Weilong, CHAI Ke, Cao Yang. INFLUENCE OF VIBRIO ON CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 45 STEEL IN SEAWATER. J Chin Soc Corr Pro, 2012, 32(4): 343-348.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I4/343

[1] Little B, Wagner P. Myths related to microbiologically influenced corrosion [J]. Mater. Perform., 1997, 36(6): 40-44

[2] Little B, Wagner P. Factors influencing the adhesion of microorganisms to surfaces [J]. J. Adhesion, 1986, 20(3): 187-210

[3] Li X B, Wang W, Wang J, et al. Effect of biofilms on metal corrosion in sea water [J]. Corros. Sci. Prot. Technol., 2002, 14(4): 218-222

    (李相波, 王伟, 王佳等. 海水中微生物膜的生长对金属腐蚀过程的影响 [J]. 腐蚀科学与防护技术, 2002, 14(4): 218-222)

[4] Jung H G, Yoo J Y, Woo J S. The microbiologically influenced corrosion behavior of C-Mn ship structural steel with different manufacturing processes [J]. ISIJ Int., 2003, 43(10): 1603-1610

[5] Mathiyarasu J, Palaniswamy N, Muralidharan V S. Corrosion resistance of cupronickels - an overview [J]. Corros. Rev., 2000, 18(1): 65-103

[6] Wu J Y, Chai K, Xiao W L, et al. The single effect of microbe on the corrosion behaviors of 25 steel in seawater [J]. Acta Metall. Sin., 2010, 40(6): 755-760

    (吴进怡, 柴柯, 肖伟龙等. 25钢在热带海洋环境下海水中的微生物单因素腐蚀[J]. 金属学报, 2010, 40(6): 755-760)

[7] Wu J Y, Xiao W L, Chai K, Yang Y H. The single effect of microbe on the corrosion behaviors of 45 steel in seawater in tropic condition [J]. Acta Metall. Sin., 2010, 46(1): 118-122

    (吴进怡, 肖伟龙, 柴柯等. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响[J]. 金属学报, 2010, 46(1): 118-122)

[8] Xiao W L, Chai K, Wu J Y, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 359-363

    (肖伟龙, 柴柯, 吴进怡等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363)

[9] Yang Y H, Xiao W L, Chai K,et al. The composition of bacteria in the corrosion product of carbon steel with different carbon content immersed in seawater for different time[J]. J. Chin. Soc. Corros. Prot., 2011, 31(4): 294-298

    (杨雨辉, 肖伟龙, 柴柯等. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响 [J]. 中国腐蚀与防护学报, 2011, 31(4): 294-298)

[10] Buchanan R E, Gibbons N E. Bergey$^{\prime}$s Manual of Determinative Bacteriology(8 th Ed.,)[M]. Baltimore, Maryland: The Williams and Wilkins Company, 1974

[11] Liu G Z, Wu J H. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Corros. Prot., 2001, 22(10): 430-433

     (刘光洲, 吴建华. 海洋微生物腐蚀的研究进展[J]. 腐蚀与防护. 2001, 22(10): 430-433)

[12] Edgar J P, Roman C S, Ignacio G F R V. Influence of Desulfo Vibrio sp. biofilm on SAE 1018 carbon steel corrosion in synthetic marine medium [J]. Corros. Sci., 2007(49): 3580-3597

[13] Cheng S, Tian J T, Chen S G, et al Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: I. Corrosion behavior [J]. Mater. Sci. Eng., 2009, C29(3): 751-755

[14] Wang Q F, Song S Z. Progress in marine biologically influenced corrosion study [J]. J. Chin. Soc. Corros. Prot., 2002, 22(3):184-188

     (王庆飞, 宋诗哲. 金属材料海洋环境生物污损腐蚀研究进展[J]. 中国腐蚀与防护学报, 2002, 22(3): 184-188)

[15] Ying Y M, Zhou R Y, Yang C H, et al. Study on the growth of biofilms and microbiological erosions on the inner wall of circulating cooling water transportation pipe [J]. Water and Wastewater Eng., 2008, 34(6): 117-121

     (应一梅, 周瑞云, 杨崇豪等. 循环冷却水输水管壁生物膜生长发育及微生物腐蚀问题研究[J]. 给水排水, 2008, 34(6): 117-121)

[16] Little B, Wagner P, Mansfeld F. Microbiologically influenced corrosion of metals and alloys [J]. Int. Mater. Rev., 1991, 36 (6):253-272

[17] Xu C M, Zhang Y H, Cheng G X, et al. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria [J]. Mater. Sci. Eng., 2007, A443: 235-241
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!