Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (4): 322-326    DOI:
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL BEHAVIOR OF PASSIVE FILMS FORMED ON X80 PIPELINE STEEL IN VARIOUS CONCENTRATED NaHCO3 SOLUTIONS
FAN Lin,LI Xiaogang,DU Cuiwei,LIU Zhiyong
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(575KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical behavior of the passive films formed on X80 pipeline steel in various concentrated NaHCO3 solutions was studied using potentiodynamic polarization curves, potentiostatic polarization curves, electrochemical impedance spectroscopy (EIS) as well as Mott-Schottky plots. The electrochemical test results indicated n-type semiconducting characters of the passive film, which was composed of two layers, with γ-Fe2O3 as the outer layer, and Fe3O4 as the inner layer. The properties of the passive films were influenced by the concentration of NaHCO3 solutions. The thickness of the inner layer merely remained constant, which was supposed to be dominated by the film forming polarization, whereas the thickness of the outer layer decreased with the increase of the concentration of NaHCO3 solution, which suggested that the outer layer plays a more important role to the corrosion resistance and stability of the passive film. According to the point defect model (PDM), higher donor density and lower thickness of the passive films was affected by the enhanced conductivity of the solution and the intensified adsorption of HCO3- at local defect sites with higher HCO3- concentration.
Key words:  X80 pipeline steel      passive film      polarization curve      EIS      Mott-Schottky plot     
Received:  28 June 2011     
ZTFLH: 

TG172

 
Corresponding Authors:  FAN Lin     E-mail:  violin_fl@163.com

Cite this article: 

FAN Lin,LI Xiaogang,DU Cuiwei,LIU Zhiyong. ELECTROCHEMICAL BEHAVIOR OF PASSIVE FILMS FORMED ON X80 PIPELINE STEEL IN VARIOUS CONCENTRATED NaHCO3 SOLUTIONS. J Chin Soc Corr Pro, 2012, 32(4): 322-326.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I4/322

[1] Fujimoto S, Tsuchiya H. Semiconductor properties and protective role of passive films of iron base alloys [J]. Corros. Sci., 2007, 49(1): 195-202

[2] Rangel C M, Silva T M, da Cunha Belo M. Semiconductor electro-chemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels [J]. Electrochim. Acta, 2005, 50(25-26): 5076-5082

[3] Zeng Y M, Luo J L, Norton P R. A study of semiconducting properties of hydrogen containing passive films [J]. Thin Solid Films, 2004, 460(1-2): 116-124

[4] Bardwell J A, MacDougall B, Graham M J. Use of $^{18}$O/SIMS and electrochemical techniques to study the reduction and breakdown of passive oxide films on iron [J]. J. Electrochem. Soc., 1988, 135(2): 413-418

[5] Hamadou L, Kadri A, Benbrahim N. Characterization of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252(5): 1510-1519

[6] Zeng Y M, Luo J L, Norton P R. Initiation and propagation of pitting and crevice corrosion of hydrogen-containing passive films on X70 micro-alloyed steel [J]. Electrochim. Acta, 2004, 49(5): 703-714

[7] Zeng Y M, Luo J L. Electronic band structure of passive film on X70 pipeline steel [J]. Electrochim. Acta, 2003, 48(23): 3551-3562

[8] Zhou J L, Li X G, Du C W, et al. Anodic electrochemical behavior of X80 pipeline steel in NaHCO3 solution [J]. Acta Metall. Sin., 2010, 46(2): 251-256 

      (周建龙, 李晓刚, 杜翠薇等. X80管线钢在NaHCO3溶液中的阳极电化学行为 [J]. 金属学报, 2010, 46(2): 251-256)

[9] Nagayama M, Cohen M. The anodic oxidation of iron in a neutral solution [J]. J. Electrochem. Soc., 1962, 109(9): 781-790

[10] Zhang G D, Guo W H, Yao W R. Electrochemical and photoelectrochemical measuring of the thickness of passive films formed on iron [J]. J. East Chin. Univ. Metall., 1990, 7(4): 46-50

     (张国栋, 郭万华, 姚文锐. 铁钝化膜厚度的电化学和光电化学测量 [J]. 华东冶金学院学报, 1990, 7(4): 46-50)

[11] Azumi K, Ohtsuka T, Sato N. Mott-Schottky plot of the passive film formed on iron in neutral borate and phosphate solutions [J]. J. Electrochem. Soc., 1987, 134(6): 1352-1357

[12] Ningshen S, Kamachi M U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci., 2007, 49(2): 481-496

[13] Modiano S, Fugivara C S, Benedetti A V. Effect of citrate ions on the electrochemical behavior of low-carbon steel in borate buffer solutions [J]. Corros. Sci., 2004, 46(3): 529-545

[14] MacDonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139(12): 3434-3449

[15] Stimming U. Photoelectrochemical studies of passive films [J]. Electrochim. Acta, 1986, 31(4): 415-429

[16] MacDonald D D. Passivity-the key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71(6): 951-978

[17] Li J B, Zuo J E. The influence of temperature on the electrochemical properties of passive films formed on X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29(1): 40-43

     (李金波, 左剑恶. 温度对X80管线钢钝化膜电化学性能的影响 [J]. 中国腐蚀与防护学报, 2009, 29(1): 40-43)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[8] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[9] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[11] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[12] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[13] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[14] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[15] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
No Suggested Reading articles found!