Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 365-372    DOI: 10.11902/1005.4537.2017.073
Current Issue | Archive | Adv Search |
Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte
Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(5950KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The wet recovery efficiency of superalloy directly depends on its dissolution rate, therefore,the electrochemical dissolution behavior of a Ni-based superalloy N5 in aqua regia was studied by means of potentiondynamic polarization measurement and electrochemical impedance spectroscopy (EIS), as well as galvanostatic- and potentiostaic-electrolysis. While the surface morphology and dissolution products of the treated alloy were characterized by means of SEM, EDS, EPMA and XRD. It was found that during electrolysis a two layered corrosion product formed on the alloy surface, which consisted of an outer layer with loose deposition of oxides and carbides of Ta and W and an inner porous layer consisted of residual matrix and Cr-rich oxides. A qualitative model has been assumed to illustrate the electrochemical dissolution behavior. It follows that the diffusion barrier effect induced by corrosion products on the anode is the main cause responsible for the increase of the electrolytic resistance, hence, stripping off the corrosion products in time can increase the dissolution rate of the superalloy by ca 100%.

Key words:  superalloy      aqua regia electrolyte      electrochemical dissolution      polarization curve      oxidation product     
Received:  06 May 2017     
ZTFLH:  TG113.23  
Fund: Supported by National Natural Science Foundation of China (51271186)

Cite this article: 

Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 365-372.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.073     OR     https://www.jcscp.org/EN/Y2018/V38/I4/365

Fig.1  Dependences of total dissolution rate and current efficiency on current density
Fig.2  Electrochemical dissolution curves of N5 alloy in aqua regia electrolyte: (a) polarization curve; (b) E-i curve
Fig.3  Surface morphologies of N5 alloy after electrolyzed for 120 s (a), 600 s (b), 1800 s (c) and 3000 s (d)
Element Mass fraction / % Atomic fraction / %
Al K 1.45 2.73
Cr K 6.34 6.21
Co K 4.85 4.19
Ni K 15.90 13.78
Mo L 2.43 1.29
Ta M 35.93 10.11
W M 15.03 4.16
Table 1  Chemical composition of anode products formed on N5 superalloy during electrolysis for 120 s
Fig.5  EPMA element mappings on the cross section of N5 alloy after 3000 s electrolysis in aqua regia electrolyte (unit: %)
Fig.6  Microstructure of the interior of electrolyzed N5alloy
Fig.7  Polarization curves of various pure metal elements contained in N5 alloy in aqua regia electrolyte
Fig.8  Bode (a) and Nyquist (b) plots of N5 alloy in aqua regia electrolyte
Fig.9  I-t curves for N5 superalloy during 1800 s electrolysis in aqua regia electrolyte at 1.554 V
Fig.10  E-t curve for N5 superalloy during 3600 s electrolysis in aqua regia electrolyte at 0.1 A/cm2 for 3600 s
Fig.11  Schematic diagram showing the electrochemical dissolution behavior of N5 alloy in aqua regia electrolyte: (a) oxide film formed in air, (b) anode product formed on the surface, (c) the film of anode and Cr rich phase formed on the surface, (d) the final reactant formed on the surface
Fig.4  XRD patterns of anode products of N5 superalloy
[1] Sun X F, Jin T, Zhou Y Z, et al.Research progress of nickel-base single crystal superalloys[J]. Mater. China, 2012, 31(12): 1(孙晓峰, 金涛, 周亦胄等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1)
[2] Chang L H.Effects of the main alloy elements on microstructure and properties of nickel base alloys[J]. Turb. Technol., 2001, 43: 319(常连华. 主要合金元素对镍基合金组织和性能的影响[J]. 汽轮机技术, 2001, 43: 319)
[3] Huang Y, Wang L, Liu Y, et al.Effects of alloying elements on oxidation behavior of a Ni-base superalloy at 1223 K[J]. Trans. Mater. Heat Treat., 2011, 32(12): 1(黄炎, 王磊, 刘杨等. 合金元素对Ni基高温合金1223K氧化行为的影响[J]. 材料热处理学报, 2011, 32(12): 1)
[4] Xing W D, Fan X X, Dong H G, et al.Regeneration technology and progress of waste superalloy[J]. Chin. J. Rare Met., 2013, 37: 494(行卫东, 范兴祥, 董海刚等. 废旧高温合金再生技术及进展[J]. 稀有金属, 2013, 37: 494)
[5] Srivastava R R, Kim M S, Lee J C, et al.Resource recycling of superalloys and hydrometallurgical challenges[J]. J. Mater. Sci., 2014, 49: 4671
[6] Meng H Q, Ma G, Wu X, et al.Hydrometallurgical recovery of waste Ni-Co super-allous[J]. Guangzhou Chem. Ind., 2012, 40(17): 29(孟晗琪, 马光, 吴贤等. 镍钴高温合金废料湿法冶金回收[J]. 广州化工, 2012, 40(17): 29)
[7] Ma R J.New development of hydrometallurgy[J]. Hydrometall. China, 2007, 26: 1(马荣骏. 湿法冶金新发展[J]. 湿法冶金, 2007, 26: 1)
[8] Palant A A, Levin A M, Levchuk O M, et al.Electrochemical processing of the metallic wastes of ZhS32 nickel superalloys[J]. Russ. Metall., 2013, 2013: 497
[9] Palant A A, Levchuk O M, Bryukvin V A, et al.Complex electrochemical processing of the metallic wastes from a rhenium-containing nickel superalloy in sulfuric acid electrolytes[J]. Russ. Metall., 2011, 2011: 589
[10] Palant A A, Gracheva O M, Bryukvin V A.Symmetric alternating current-assisted electrochemical processing of metallic rhenium wastes in ammonia electrolytes[J]. Russ. Metall., 2007, 2007: 643
[11] Stoller V, Olbrich A, Meese-Marktscheffel J, et al.Process for electrochemical decomposition of superalloys [P]. US Pat., 2003013 6685A1, 2003
[12] Stoller V, Olbrich A, Meese-Marktscheffel J, et al.Electrochemical dissolution process for disintegrating superalloy scraps [P]. European Patent. 1312686B1, 2008
[13] Haisch T, Mittemeijer E, Schultze J W.Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: Microstructure of surface films formed by carbides[J]. Electrochim. Acta, 2001, 47: 235
[14] Wang D Y, Zhu Z W, Wang N F, et al.Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution[J]. Electrochim. Acta, 2015, 156: 301
[15] Meleka A H, Glew D A.Electrochemical machining[J]. Int. Mater. Rev., 1977, 22: 229
[16] Fernandes S Z, Mehendale S G, Venkatachalam S.Influence of frequency of alternating current on the electrochemical dissolution of mild steel and nickel[J]. J. Appl. Electrochem., 1980, 10: 649
[17] Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth[J]. Electrochim. Acta, 2003, 48: 1093
[18] Singh V B, Arvind U.Active, passive and transpassive dissolution of a nickel base super alloy in concentrated acid mixture solution[J]. Mater. Corros., 1995, 46: 590
[19] Abdallah M.Corrosion behaviour of 304 stainless steel in sulphuric acid solutions and its inhibition by some substituted pyrazolones[J]. Mater. Chem. Phys., 2003, 82: 786
[20] Kolotyrkin Y M.The electrochemistry of alloys[J]. Electrochim. Acta, 1980, 25: 89
[21] Mischler S, Vogel A, Mathieu H J, et al.Chemical composition of the passive film on Fe-24Cr and Fe-24Cr-11Mo studied by AES, XPS and SIMS[J]. ChemInform, 1991, 32: 925
[1] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[2] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] LI Fengjie,CHEN Minghui,ZHANG Zheming,WANG Shuo,WANG Fuhui. Preparation and Thermal Shock Behavior of a Metal-enamel High-temperature Protective Coating[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[4] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[6] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[7] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[8] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[9] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[10] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[11] Zhan ZHAO,Jingyang LI,Jianxin DONG,Zhihao YAO,Maicang ZHANG. Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[12] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[13] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[14] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[15] Jingyong SUN,Qiushi LI,Hongbo GUO,Shengkai GONG. Effect of Interdiffusion Between Ni-Al Coating and Substrate on Microstructure Stability of Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
No Suggested Reading articles found!