Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 273-280    DOI: 10.11902/1005.4537.2018.178
Current Issue | Archive | Adv Search |
Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating
SUN Shuo(), YANG Jie, QIAN Xinzhu, CHANG Renli
College of Science, Shenyang University of Technology, Shenyang 110870, China
Download:  HTML  PDF(3481KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-Cr-P alloy coatings on Q235 steel were prepared by electroless plating. The effect of CrCl3, C3H6O3, C2H5NO2 and K2C2O4 on the structure, composition and corrosion resistance of the prepared coatings was investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that with the increase of concentration of lactic acid, glycine, and potassium oxalate, the deposition rate was decreased continuously. In the contrast, the deposition rate was increased continuously with the increase of concentration of chromium chloride. The Ni-Cr-P coatings presented a surface morphology of cauliflower-like microstructures composed of a mixture of polycrystalline and amorphous. Notably, the anticorrosion performance of the Ni-Cr-P coatings were found to be much better than that of the Ni-P coatings.

Key words:  electroless      Ni-Cr-P alloy coating      complexing agent      AC impedance      polarization curve     
Received:  27 November 2018     
ZTFLH:  TD123  
Fund: National R&D Infrastructure and Facility Development Program of China(2005DKA10400-15-Z04)
Corresponding Authors:  SUN Shuo     E-mail:  sunshuo@sut.edu.cn

Cite this article: 

SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 273-280.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.178     OR     https://www.jcscp.org/EN/Y2020/V40/I3/273

Fig.1  Effects of the concentration of chromium chloride on the deposition rate of Ni-Cr-P plating and the content of Cr
Fig.2  Potentiodynamic polarization curves (a) and EIS (b) of Ni-Cr-P plating in 0.5 mol·L-1 H2SO4 solution with the different concentrations of CrCl3
c(CrCl3) g·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
3-0.0449.278505544691417
5-0.0686.971601950421935
10-0.0857.178598444271233
15-0.0359.40451151409320.9
20-0.1908.74147904575886.3
Table 1  Fitting values of potentiodynamic polarization curves and EIS for Ni-Cr-P plating in 0.5 mol·L-1 H2SO4 solution
Fig.3  Effects of the concentration of lactic acid on the deposition rate of Ni-Cr-P plating and the content of Cr
Fig.4  Potentiodynamic polarization curves (a) and EIS (b) of Ni-Cr-P plating in 0.5 mol·L-1 H2SO4 solution withthe different concentrations of C3H6O3
c(C3H6O3) mL·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
20-0.0857.178598443671106
30-0.0808.225631241661597
35-0.0719.320509537061583
40-0.0789.65851193222747.4
Table 2  Fitting values of potentiodynamic polarization curves and EIS for Ni-Cr-P alloy in 0.5 mol·L-1 H2SO4 solution
Fig.5  Effects of the concentration of glycine on the deposition rate of Ni-Cr-P plating and the content of Cr
Fig.6  Potentiodynamic polarization curves (a) and EIS (b) of Ni-Cr-P plating in 0.5 mol·L-1 H2SO4 solution with the different concentrations of C2H5NO2
c(C2H5NO2) g·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
0.1-0.06014.4504819---3592
4-0.05119.38025802720924
6-0.0627.787512341901561
15-0.0738.108543238011366
Table 3  Fitting values of potentiodynamic polarization curves and EIS for Ni-Cr-P alloy in 0.5 mol·L-1 H2SO4 solution
Fig.7  Effects of the concentration of potassium oxalate on the deposition rate of Ni-Cr-P plating and the content of Cr
Fig.8  Potentiodynamic polarization curves (a) and EIS (b) of Ni-Cr-P plating in 0.5 mol·L-1 H2SO4 solution with the different concentrations of K2C2O4
c(K2C2O4) g·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
0-0.26910022751566503.9
2.5-0.1524.849775146484420
5-0.1308.818473127661305
10-0.1436.626586333921670
Table 4  Fitting values of potentiodynamic polarization curves and EIS for Ni-Cr-P alloy in 0.5 mol·L-1 H2SO4 solution
Fig.9  Potentiodynamic polarization curves (a) and EIS (b) of Ni-P coating and Ni-Cr-P coating in 0.5 mol·L-1 H2SO4 solution
CoatingEcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
Ni-P-0.41294.81467---441
Ni-Cr-P-0.1584.850775546584430
Table 5  Fitting values of potentiodynamic polarization curves and EIS for Ni-P coating and Ni-Cr-P coating in 0.5 mol·L-1 H2SO4 solution
Fig.10  SEM image of Ni-Cr-P alloy coating
Fig.11  XRD pattern of Ni-Cr-P alloy coating
[1] Ching Y B, Yu Y H, Chu L C, et al. Surface modifications of aluminum alloy 5052 for bipolar plates using an electroless deposition process [J]. J. Power Sources, 2008, 183: 174
doi: 10.1016/j.jpowsour.2008.04.082
[2] Yao Z H, Zhag Z Z, Zhao F X, et al. Electroless plating Ni-Cu-P surface modification of stainless steel polar plates for PEMFC [J]. Corros. Prot., 2010, 31: 431
(姚振虎, 张振忠, 赵芳霞等. 质子交换膜燃料电池双极板化学镀Ni-Cu-P表面改性 [J]. 腐蚀与防护, 2010, 31: 431)
[3] AlZahrani A, Alhamed Y, Petrov L, et al. Mechanical and corrosion behavior of amorphous and crystalline electroless Ni-W-P coatings [J]. J. Solid State Electrochem., 2014, 18: 1951
doi: 10.1007/s10008-014-2437-8
[4] Yang Y, Balaraju J N, Huang Y Z, et al. Interface reaction between electroless Ni-Sn-P metallization and lead-free Sn-3.5Ag solder with suppressed Ni3P formation [J]. J. Electr. Mater., 2014, 43: 4103
doi: 10.1007/s11664-014-3306-z
[5] Roy S, Sahoo P. Parametric optimization of corrosion and wear of electroless Ni-P-Cu coating using grey relational coefficient coupled with weighted principal component analysis [J]. Int. J. Mech. Mater. Eng., 2014, 1: 10
[6] Chang H S, Li W, Li J W. Preparation of corrosion-resistant, EMI shielding and magnetic veneer-based composite via Ni-Fe-P alloy deposition [J]. J. Mater. Sci., 2015, 26: 7096
[7] Wang H, Xie M, Zong Q, et al. Electroless Ni-W-Cr-P alloy coating with improved electrocatalytic hydrogen evolution performance [J]. Surf. Eng., 2015, 31: 226
doi: 10.1179/1743294414Y.0000000373
[8] Che L, Xiao M, Xu H, et al. Enhanced corrosion resistance and microhardness of titanium with electroless deposition Ni-W-Cr-P coating [J]. Mater. Manuf. Process., 2013, 28: 899
doi: 10.1080/10426914.2013.792412
[9] Zhang L, Jin Y, Peng B, et al. Effects of annealing temperature on the crystal structure and properties of electroless deposited Ni-W-Cr-P alloy coatings [J]. Appl. Surf. Sci., 2008, 255: 1686
doi: 10.1016/j.apsusc.2008.06.012
[10] Jin Z Y, Li P P, Zheng B Z, et al. The structure and properties of electroless Ni-Mo-Cr-P coatings on copper alloy [J]. Mater. Corros., 2013, 64: 341
[11] Shashikala A R, Mayanna S M, Sharma A K. Studies and characterisation of electroless Ni-Cr-P alloy coating [J]. Trans. IMF, 2007, 85: 320
doi: 10.1179/174591907X246483
[12] Chen W Y, Tien S K, Duh J G. Thermal stability and microstructure characterization of sputtered Ni-P and Ni-P-Cr coatings [J]. Surf. Coat. Technol., 2004, 188/189: 489
[13] Jin Y, Sun P, Liu Q L, et al. Effects of heat-treatment on structure and properties of electroless Ni-Cr-P alloy plating on the surface of stainless steel [J]. Trans. Mater. Heat Treat., 2012, 33(3): 146
(晋勇, 孙平, 刘巧玲等. 热处理对不锈钢表面化学镀Ni-Cr-P合金镀层结构及性能的影响 [J]. 材料热处理学报, 2012, 33(3): 146)
[14] Xiao X, Long Y Q, Zhong P, et al. Electroless nickel-chromiun-phosphorus alloy process [J]. Surf. Technol., 2003, 32(2): 47
(肖鑫, 龙有前, 钟萍等. 化学镀Ni-Cr-P合金工艺研究 [J]. 表面技术, 2003, 32(2): 47)
[15] Yang Y G, Xu S H, Sun D B, et al. Formula of electroless plating solution [J]. Surf. Technol., 1998, 28(4): 43
(杨玉国, 许韶华, 孙冬柏等. Ni-Cr-P化学镀液的配制方法 [J]. 表面技术, 1998, 28(4): 43)
[16] Huang X M, Xu X P, Li Y, et al. Study on compounding of complexing agents in electroless Ni-Cr-P plating [J]. Electroplat. Pollut. Control, 2016, 36(1): 21
(黄小梅, 徐晓鹏, 李阳等. Ni-Cr-P化学镀液中配位剂复配的研究 [J]. 电镀与环保, 2016, 36(1): 21)
[17] Zeng Z X, Zhang Y X, Zhao W J, et al. Role of complexing ligands in trivalent chromium electrodeposition [J]. Surf. Coat. Technol., 2011, 205: 4771
doi: 10.1016/j.surfcoat.2011.04.019
[18] Li L, Wang Z, Wang M Y, et al. Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition [J]. Int. J. Miner. Metall. Mater., 2013, 20: 902
[19] Tharamani C N, Hoor F S, Begum N S, et al. Microstructure, surface and electrochemical studies of electroless Cr-P coatings tailored for the methanol oxidative fuel cell [J]. J. Solid State Electrochem., 2005, 9: 476
doi: 10.1007/s10008-004-0580-3
[20] Liao Z H, Song B, Ren Z, et al. Electrochemical corrosion behavior of matrix and weld seam of X70 steel in Na2CO3+NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 158
(廖梓含, 宋博, 任泽等. X70 钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 158)
doi: 10.11902/1005.4537.2017.043
[21] Li N, Yuan G W, Li D Y. Theory and Technology of Electroless Nickel Planting [M]. Harbin: Harbin Institute of Technology Press, 2000: 159
(李宁, 袁国伟, 黎德育. 化学镀镍基合金理论与技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2000: 159)
[22] Jiang X X, Shen W. The Fundamentals and Practice of Electroless Plating [M]. Beijing: National Defense Industry Press, 2000: 29
(姜晓霞, 沈伟. 化学镀理论及实践 [M]. 北京: 国防工业出版社, 2000: 29)
[23] Tu Z M, Zheng J, Li N, et al. Recent development and tendency of trivalent chromium plating [J]. Surf. Technol., 2007, 36(5): 59
(屠振密, 郑剑, 李宁等. 三价铬电镀铬现状及发展趋势 [J]. 表面技术, 2007, 36(5): 59)
[24] Barsoukov E, Macdonald J R. Impedance Spectroscopy: Theory, Experiment, and Applications [M]. 2nd Ed., New York: John Wiley & Sons, 2005
[1] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[2] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[4] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[5] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[6] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[7] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[8] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[9] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[10] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[11] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[12] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[13] Yang LIU,Xiaozhen HUA,Jinhua HUANG,Xia CUI,Xianliang ZHOU,Yingwei YU. Influence of Electroless Nickel Plating of SiC Particles on Interface Character and Corrosion Resistance of SiCp/Al Composites[J]. 中国腐蚀与防护学报, 2016, 36(2): 130-136.
[14] Wen CHEN,Chunping GUAN,Shenming YANG,Xiaoan HU. Corrosion Inhibition of Equisetum Ramosissimum Extractive for Carbon Steel in Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2016, 36(2): 177-184.
[15] Xueying TANG,Guohua LU,Zhiping ZHU,Sen LIU,Daxia MAO. Electrochemical Behavior of Steel 20G Used in Boiler-front System in Simulated High Temperature Waters[J]. 中国腐蚀与防护学报, 2015, 35(4): 365-371.
No Suggested Reading articles found!