Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 463-470    DOI: 10.11902/1005.4537.2017.168
Current Issue | Archive | Adv Search |
Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation
Mingyuan JIAO1,2, Weiliang JIN1,2, Jianghong MAO2(), Teng LI3, Jin XIA1
1 Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2 Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
3 China Energy Engineering Group Zhejiang Electric Design Institute Co., LTD., Hangzhou 310012, China
Download:  HTML  PDF(3480KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrochemical remediation is one important method to improve the durability of the existed reinforced concrete structural parts. However, the hydrogen evolution during the reparative process restricts the applied range of electrochemical remediation. The Nernst formula indicated that the equilibrium potential of hydrogen evolution is related to reactant concentration,product concentration and temperature. Accordingly,the equilibrium potential of hydrogen evolution of rebar as a cathode during the electrochemical remediation is related to the inner environment of the concrete under repair. The rationality of measuring current density of hydrogen evolution by potentiodynamic polarization curve is demonstrated in this paper. Then the current density of hydrogen evolution of the rebar embedded in concretes with different water-cement ratio (W /C) is measured. Results indicate that the current density of hydrogen evolution is lower for the rebar embedded in the concrete with lower W /C ratio. Therefore, it is not suitable to adopt a common current density value as a specified index for the controlling of hydrogen evolution during the electrochemical remediation of different concretes.

Key words:  water-cement ratio      Nernst equation      hydrogen evolution      potentiodynamic polarization curve      current density     
Received:  11 October 2017     
ZTFLH:  TU375  
Fund: Supported by National Natural Science Foundation of China (51638013 and 51578490), Natural Science Foundationof Zhejiang Province (LY18E080003) and Ningbo Natural Science Foundation (2016A610215 and 2017A610313)

Cite this article: 

Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 463-470.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.168     OR     https://www.jcscp.org/EN/Y2018/V38/I5/463

Fig.1  Cathodic overpotential curve under the condition ofconcentration polarization[13]
Fig.2  Cathodic polarization curve of the rebar embeddedin concrete[13]
Fig.3  Side views of specimen (unit: mm)
W/C Water Cement Fine aggregate Coarse aggregate
0.43 188.7 500 592.6 1119
0.48 187 448 646.3 1118.7
0.53 185.3 406 669 1109.7
Table 1  Mix proportion of concrete specimen(kg/m3)
Fig.4  Test device of potentiodynamic polarization curve
Fig.5  Test site map of stomatal scanning
Fig.6  Pictures of testing sample (a) and scanning electron microscopy (b)
Fig.7  Cathodic polarization curves of reinforced concrete specimens with the W/C values of 0.43 (a), 0.48 (b) and 0.53 (c)
Fig.8  First derivatives of cathodic polarization curves of reinforced concrete specimens with the W/C values of 0.43 (a), 0.48 (b) and 0.53 (c)
Specimen W/C=0.43 W/C=0.48 W/C=0.53
1 0.61 0.37 0.19
2 0.66 0.35 0.20
3 0.50 0.31 0.21
4 0.51 0.31 0.27
5 0.50 0.56 0.22
Average value 0.55 0.38 0.22
Standard deviation 0.0743 0.1039 0.0311
Table 2  Hydrogen evolution current densities of reinforced concrete specimens with different values of W/C(unit: A/m2)
Fig.9  pH values of specimens with the different W/Cvalues
Fig.10  Distribution of the diameter of pores around the rebar in the concrete specimens with the different W/C values
Fig.11  SEM images of samples with the W/C values of 0.43 (a), 0.48 (b) and 0.53 (c)
Fig.12  High-magnification SEM images of samples with the W/C values of 0.43 (a), 0.48 (b) and 0.53 (c)
[1] Jin W L.Corroded Concrete Structures [M]. Beijing: Science Press, 2011(金伟良. 腐蚀混凝土结构学 [M]. 北京: 科学出版社, 2011)
[2] Vera R, Villarroel M, Carvajal A M, et al.Corrosion products of reinforcement in concrete in marine and industrial environments[J]. Mater. Chem. Phys., 2009, 114: 467
[3] Fajardo G, Escadeillas G, Arliguie G.Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial” sea-water[J]. Corros. Sci., 2006, 48: 110
[4] Kim S J, Jang S K, Kim J I.Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength steel[J]. Met. Mater. Int., 2005, 11: 63
[5] Siegwart M, Lyness J F, McFarland B J, et al.The effect of electrochemical chloride extraction on pre-stressed concrete[J]. Construct. Build. Mater., 2005, 19: 585
[6] Jin W L, Chen J Y, Mao J H, et al.The effect of electrochemical rehabilitation on service performance of reinforced concrete structures[J]. Eng. Mech., 2016, 33(2): 1(金伟良, 陈佳芸, 毛江鸿等. 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33(2): 1)
[7] Zheng L, Wei J X, Yu Q J, et al.Electrode reaction during electrochemical chloride extraction of reinforced concrete[J]. J. Chin. Ceram. Soc., 2009, 37: 1190(郑靓, 韦江雄, 余其俊等. 电化学除盐过程中钢筋表面发生的电极反应[J]. 硅酸盐学报, 2009, 37: 1190)
[8] Fujimoto N, Sawada T, Tada E, et al.Effect of PH on hydrogen absorption into steel in neutral and alkaline solutions[J]. Mater. Trans., 2017, 58: 211
[9] Xu Y Y, Wang Q F, Luo Q.Electrochemical corrosion behaviors of hot-dip galvanized steel in simulated concrete pore solutions[J]. J. Fuzhou Univ.(Nat. Sci. Ed.), 2008, 36: 424(徐玉野, 王全凤, 罗漪. 热镀锌钢在模拟混凝土孔隙液中电化学腐蚀行为[J]. 福州大学学报(自然科学版), 2008, 36: 424)
[10] Carneiro-Neto E B, Lopes M C, Pereira E C. Simulation of interfacial PH changes during hydrogen evolution reaction[J]. J. Electroanal. Chem., 2016, 765: 92
[11] Boiadjieva-Scherzer T, Kronberger H, Fafilek G, et al.Hydrogen evolution reaction on electrodeposited Zn-Cr alloy coatings[J]. J. Electroanal. Chem., 2016, 783: 68
[12] Du M, Gao R J, Wei X J.Hydrogen evolution reaction of Ni-S ele-ctrodeposited cathode[J]. Chin. J. Power Sources, 2001, 25: 223(杜敏, 高荣杰, 魏绪钧. 电沉积Ni-S合金阴极析氢反应[J]. 电源技术, 2001, 25: 223)
[13] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed.,Beijing: Chemical Industry Press, 2008(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[14] Jin J, Wu G J, Weng J, et al.Experimental study on influence of cement water ratio on chloride diffusion coefficient and carbonation rate of concrete[J]. Bull. Chin. Ceram. Soc., 2011, 30: 943(金骏, 吴国坚, 翁杰等. 水灰比对混凝土氯离子扩散系数和碳化速率影响的试验研究[J]. 硅酸盐通报, 2011, 30: 943)
[15] Jin W L, Xue W, Chen J.Effecting coefficients for concrete structure durability design index[J]. J. Build. Struct., 2011, 32(12): 86(金伟良, 薛文, 陈驹. 海岸及近海混凝土材料耐久性设计指标的影响参数分析[J]. 建筑结构学报, 2011, 32(12): 86)
[16] Nesic S, Postlethwaite J, Olsen S.An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion, 1996, 52(4): 280
[17] Yang Z Y.Studying the effect of cathodic polarization on the susceptibility of 907 steel to hydrogen embrittlement [D]. Qingdao: Ocean University of China, 2009(杨兆艳. 阴极极化对海水中907钢氢脆敏感性影响研究 [D]. 青岛: 中国海洋大学, 2009)
[18] Bennett J, Schue T J.Electrochemical chloride removal and protection of concrete bridge components: laboratory studies strategic highway research program [R]. Washington: National Research Council, 1993: 27
[19] García J, Almeraya F, Barrios C, et al.Effect of cathodic protection on steel-concrete bond strength using ion migration measurements[J]. Cem. Concr. Compos., 2012, 34: 242
[20] Wei J X, Wang X X, Zheng L, et al.Research on the hydrogen evolution reaction and its effect on the bond strength between reinforcement and concrete during electrochemical chloride extraction[J]. J. Wuhan Univ. Technol., 2009, 31(12): 30(韦江雄, 王新祥, 郑靓等. 电除盐中析氢反应对钢筋-混凝土粘结力的影响[J]. 武汉理工大学学报, 2009, 31(12): 30)
[21] Li T, Jin W L, Xu C, et al.Determination of steady critical current density of hydrogen evolution during electrochemical repair process of reinforced concrete[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 382(李腾, 金伟良, 许晨等. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37: 382)
[22] Ren X P, Ren X D, Pang L Q, et al.MoS2/sulfur and nitrogen co-doped reduced grapHene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution[J]. Int. J. Hydrog. Energy, 2016, 41: 916
[23] Lian H Z, Tong L, Chen E Y.Fundamentals of Phase Study of Building Materials [M]. Beijing: Tsinghua University Press, 1996(廉慧珍, 童良, 陈恩义. 建筑材料物相研究基础 [M]. 北京: 清华大学出版社, 1996)
[24] Zhou L X, Wang Q C, Zhang F Q.Effect of mineral admixture and pore structure on the permeability of concrete[J]. J. Hydroelectric Eng., 2010, 29(3): 196(周立霞, 王起才, 张粉芹. 矿物掺合料和孔结构对混凝土抗渗性的影响[J]. 水力发电学报, 2010, 29(3): 196)
[1] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[2] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[3] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[4] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[5] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[6] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[7] FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[8] WANG Yong,TIAN Ying,GUO Quanzhong,GUO Xinghua,DU Keqin,WANG Fuhui. Effect of Cathodic Current Density on Compactness of Micro Arc Oxidation Film on LY12 Al Alloy[J]. 中国腐蚀与防护学报, 2013, 33(6): 475-480.
[9] XU Chen,YUE Zengguo,JIN Weiliang. Research on Reinforcement Corrosion in Concrete by Using Electrochemical Frequency Modulation Technology[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[10] LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[11] QIAO Yanxin, LIU Feihua, REN Ai, JIANG Shengli, ZHENG Yugui. EROSION-CORROSION BEHAVIOR OF HIGH NITROGEN STAINLESS STEEL AND COMMERICAL 321 STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[12] MEI Tianqing, YU Guangnan, HE Limin, PEI Yuru. ELECTRODEPOSITION OF ALUMINUM FROM\par AlCl3-[bmim]Cl IONIC LIQUIDS[J]. 中国腐蚀与防护学报, 2011, 31(4): 319-328.
[13] LIU Zuojia, CHENG Xuequn, LIU Xiaohui, LI Xiaogang. CALCULATION AND ANALYSIS OF DIFFUSIVITY OF POINT DEFECTS IN PASSIVE FILM FORMED ON 2205 DUPLEX STAINLESS STEEL AND 316L AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2010, 30(4): 273-277.
[14] Yusu Song; Yan Zhang; Liqing Zhou. FACTORS EFFECTING ON THE HYDROGEN EVOLUTION ON Al-ANODES IN STRONG ALKALINE SOLUTION[J]. 中国腐蚀与防护学报, 2006, 26(4): 237-240 .
[15] . Corrosion Behavior of AZ91D Magnesium Alloy in Hand Sweat 1.Effect of hand sweat composition on the corrosion behavior of AZ91D magnesium alloy[J]. 中国腐蚀与防护学报, 2004, 24(5): 276-279 .
No Suggested Reading articles found!