Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (6): 533-542    DOI: 10.11902/1005.4537.2017.042
Current Issue | Archive | Adv Search |
XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel
Dong LIU,Hongliang XIANG(),Chunyu LIU
1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
Download:  HTML  PDF(5152KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Silver-bearing antibacterial duplex stainless steels were prepared by adding silver granules (code name A) or 150~300 μm Cu-Ag particles (code name B) respectively. The two steels were then subjected to solid solution treatment at 1150 ℃. The surface passive films formed on the two steels after potentiodynamic polarization test in bacteria bearing liquid were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicated that there exist silver as atomic Ag and oxide AgO, while chromium as CrO2, CrO3and Cr(OH)3in the surface passive film of the steel A. However silver as oxides of AgO, Ag2O and Ag3O, while Cr as chromic oxides of multi-valence present in the surface passive film of the steel B. In comparison with the passive film on the steel A, that on the steel B has higher amount of Cr2O3, molybdenum oxides and MoO42-, but lower amount of hydroxides/hydrates, meaning that the stability of the passive film on the steel B is better.

Key words:  silver-bearing antibacterial duplex stainless steel      passive film      XPS technology     
Received:  17 March 2017     
ZTFLH:  TG174.3  
Fund: Supported by Major Projects Fund from Fujian(2017HZ0001);Industrial Technology Joint-Innovation Projects of Fujian(FG-2016001);Young and Middle-aged Scientific Research Project from Fujian Education Department(JAT160066);Science and Technology Project of Fuzhou(2018-G-68);Marine High-tech Industry Development of Fujian ((2014)14)
Corresponding Authors:  Hongliang XIANG     E-mail:  hlxiang@fzu.edu.cn

Cite this article: 

Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 533-542.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.042     OR     https://www.jcscp.org/EN/Y2018/V38/I6/533

Fig.1  Potentiodynamic polarization curves of the specimens A and B in bacteria-free (a) and bacteria environments (b)
SampleTime / s529.9 eV (M—OH)530.7 eV (M—O)531.5 eV (M—O)532.0 eV (M—OH)533.2 eV (H2O)
A016.1660.902.3412.428.18
106.0776.110.0010.856.97
203.3474.300.0019.752.61
303.3982.310.0012.741.55
B018.3215.8449.288.007.56
1025.2839.826.7825.252.87
2014.9570.360.0011.591.10
3015.0484.060.000.000.90
Table 1  Binding energies and relative contents of O1s
Fig.2  Narrow XPS of O1s in passive film for samples A (a~d) and B (e~h) after sputtering for 0 s (a, e), 10 s (b, f), 20 s (c, g) and 30 s (d, h)
Fig.3  Narrow XPS of Ag3d5/2in passive film for samples A (a~d) and B (e~h) after sputtering for 0 s (a, e), 10 s (b, f), 20 s (c, g) and 30 s (d, h)
SampleTime / s

367.40 eV

(AgO)

367.70 eV

(AgF)

367.80 eV

(Ag2O)

368.00 eV

(AgO)

368.10 eV

(Ag)

368.16 eV

(Ag)

368.23 eV

(Ag)

368.40 eV

(Ag3O)

A027.295.6011.0513.3515.608.667.5410.91
1025.160.0016.0312.840.0024.6516.205.11
2014.360.0019.3213.3219.1013.7120.370.00
3011.250.0024.110.0021.4443.200.000.00
B021.985.0614.3826.080.005.943.2423.32
1014.660.0031.6219.8416.410.007.4310.04
2018.250.0038.650.0024.046.0412.840.00
3012.340.0032.300.0038.5716.790.000.00
Table 2  Binding energies and relative contents of Ag3d5/2
SampleTime / s707.0 eV (Fe)708.2 eV (Fe3O4)709.4 eV (FeO)710.8 eV (Fe2O3)711.8 eV (FeOOH)
A031.825.2430.6123.558.78
1024.6032.3215.7716.6510.66
2031.5734.9213.0714.815.63
3046.5730.4812.0110.940.00
B043.8020.0412.3418.685.13
1045.1915.9220.4618.430.00
2041.5414.6038.235.630.00
3044.4310.2436.838.500.00
Table 3  Binding energies and relative contents of Fe2p3/2
Fig.4  Narrow XPS of Fe2p3/2in passive film for samples A (a~d) and B (e~h) after sputtering for 0 s (a, e), 10 s (b, f), 20 s (c, g) and 30 s (d, h)
Fig.5  Narrow XPS of Cr2p in passive film for samples A (a~d) and B (e~h) after sputtering for 0 s (a, e), 10 s (b, f), 20 s (c, g) and 30 s (d, h)
SampleTime / S574.3 eV (Cr)576.3 eV (CrO2)576.8 eV (Cr2O3)577.3 eV (Cr(OH)3)578.3 eV (CrO3)
A07.5044.240.0023.2824.98
1019.7542.077.3320.1410.71
2045.630.0044.210.0010.16
3050.170.0048.700.001.13
B011.6434.6921.5611.6020.51
1011.5012.1875.540.000.78
2032.490.0067.160.000.35
3040.680.0058.480.000.84
Table 4  Binding energies and relative contents of Cr2p
Fig.6  Narrow XPS of Mo3d5/2in passive film for samples A (a~d) and B (e~h) after sputtering for 0 s (a, e), 10 s (b, f), 20 s (c, g) and 30 s (d, h)
SampleTime / s228.0 eV (Mo)228.8 eV (MoCl3)229.3 eV (MoO2)230.9 eV (MoO2)231.5 eV (MoO3)232.7 eV (MoO42-)
A00.000.367.8738.3119.9033.55
1037.260.0016.9611.6720.4713.64
2081.180.0018.820.000.000.00
3083.730.0016.270.000.000.00
B00.000.976.9711.939.6470.49
1023.340.000.004.5872.080.00
2040.380.000.0059.620.000.00
3046.050.000.0053.950.000.00
Table 5  Binding energies and relative contents of Mo3d5/2
[1] Zhang Y,Li Q,Wang S G.Corrosion resistance of 2507 duplex stainless steel in NaClO solution[J]. J. Mater. Eng.,2016,44(1):108
[1] 张艳,李倩,王胜刚.2507双相不锈钢在NaClO溶液中的腐蚀性能[J].材料工程,2016,44(1):108
[2] Santamaria M,Di Franco F,Di Quarto F,et al.Photoelectrochemical and XPS characterisation of oxide layers on 316L stainless steel grown in high-temperature water[J]. J. Solid State Electrochem.,2015,19(2):3511
[3] Tardio S,Abel M L,Carr R H.Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS[J]. J Vac. Sci. Technol. A,2015,33(5):1
[4] Wang Y W,Jiang R J,Zhao J M.The properties of passive films formed on 316L and 316LN stainless steel in high-temperature and high-salinity solution[J]. J Univ Beijing. Chem. Tech. (Nat. Sci.),2017,44(5):72
[4] 王育武,姜瑞景,赵景茂.316L和316LN不锈钢在高温高盐溶液中钝化膜的性能研究[J].北京化工大学学报 (自然科学版),2017,44(5):72
[5] Xiang H L,Guo P P,Liu D.Microstructure and antibacterial properties of Ag-bearing duplex stainless steel[J].Acta Metall. Sin.,2014,50:1210
[5] 向红亮,郭培培,刘东.含Ag抗菌双相不锈钢组织及抗菌性能研究[J].金属学报,2014,50:1210
[6] Feng D M,Wang J Q,Wu W H.Introduction to Electronic Spectroscopy (XPS/XAES/UPS)[M].Beijing:National Defence Industry Press,1992
[6] 冯大明,王建祺,吴文辉.电子能谱学 (XPS/XAES/UPS) 引论[M].北京:国防工业出版社,1992)
[7] Liu S H.X-ray Photoelectron Spectroscopy Analysis[M].Beijing:Science Press,1988
[7] 刘世宏.X射线光电子能谱分析[M].北京:科学出版社,1988)
[8] Liu G Q,Zhu Z Y,Ke W.The pitting of stainless and nickel-based alloys in acetic acid solution containing bromine ion[J].Acta Metall. Sin.,2001,37:275
[8] 刘国强,朱自勇,柯伟.不锈钢及镍基合金在含溴醋酸中的点蚀行为[J].金属学报,2001,37:275
[9] Zhang L,Han E-H,Zhang Z E,et al.The corrosion of stainless steel and nickel base alloys in subcritical water condition[J].Acta Metall.Sin.,2003,39:649
[9] 张丽,韩恩厚,张召恩等.不锈钢及镍基合金在亚临界水环境中的腐蚀[J].金属学报,2003,39:649
[10] Wang Z C,Zhang Y Z,Zhou S M,et al.Corrosion compositions of carbon steel under ion-selective coatings by XPS[J]. J Chin. Soc. Corros. Prot., 2001,21:273
[10] 王周成, 张瀛洲, 周绍民等. 离子选择性涂层下碳钢表面腐蚀产物的XPS分析[J].中国腐蚀与防护学报,2001,21:273
[11] Kumagai M,Myung S,Asaishi R,et al.High nitrogen stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. J. Power Sources,2008,54(3):815
[12] He G,Gao Q W.Corrosion performance of enviroment-friendly chemical conversion films on mild steel[J].Corros. Sci. Prot. Technol.,2009,21:66
[12] 何刚,高勤卫.钢铁表面环保型杂多酸化学转化膜的耐蚀性[J].腐蚀科学与防护技术,2009,21:66
[13] Huang C,Shih C.Effects of nitrogen and high temperature aging onσphase precipitation of duplex stainless steel[J].Mater. Sci. Eng.,2005,A402(1/2):66
[14] Maurice V,Yang W P,Marcus P.X-Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces[J]. J. Electrochem. Sci.,1998,145(3):909
[15] Xu C C,Wu X M.Mechanism of MoO42-retarding the development of the local corrosion in 304 stainless steel/Cl-solution[J].Chin. J. Mater. Res.,2002,16:354
[15] 许淳淳,吴小梅.MoO42-抑制AISI304不锈钢局部腐蚀的机理[J].材料研究学报,2002,16:354
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[3] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[4] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[5] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[6] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[7] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[8] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[9] Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[10] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[11] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[12] LIU Zuojia,CHENG Xuequn,LI Xiaogang,LIU Xiaohui. Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(2): 90-96.
[13] FAN Lin,LI Xiaogang,DU Cuiwei,LIU Zhiyong. ELECTROCHEMICAL BEHAVIOR OF PASSIVE FILMS FORMED ON X80 PIPELINE STEEL IN VARIOUS CONCENTRATED NaHCO3 SOLUTIONS[J]. 中国腐蚀与防护学报, 2012, 32(4): 322-326.
[14] QIAO Yanxin, REN Ai, LIU Feihua. ELECTROCHEMICAL BEHAVIOR OF ALLOY 690 IN NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(2): 146-150.
[15] ZHANG Shenghan, LIAN Jia, TAN Yu. SEMICONDUCTOR CHARACTER OF PASSIVE FILMS FORMED ON 304L STAINLESS STEEL IN ZINC CONTAINED HIGH TEMPERATURE WATER[J]. 中国腐蚀与防护学报, 2011, 31(6): 483-487.
No Suggested Reading articles found!