Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (2): 102-108    DOI:
Current Issue | Archive | Adv Search |
CHARACTERISTIC OF DYNAMIC RECRYSTALLIZATION AND ITS INFLUENCE ON CORROSION SENSITIVITY OF COPPER ALLOY
ZHAO Yuehong, LIN Leyun, WANG Zhenhai
Beijing General Research Institute for Nonferrous Metals, Beijing 100088
Download:  PDF(2793KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior of copper alloy tube with different microstructures in fresh water was investigated in this paper. A lot of minute grains with less than 5 µm diameter were discovered in the alloy matrix, indicating imperfect recrystallization. The existence of many micro-grains made local corrosion of copper alloy much more sensitive when servicing in fresh water, during which the film was unstable and peeled and micro cracking and intergranular corrosion appeared. Furthermore, this kind of microstructure with imperfect recrystallization could form corrosion channel and make the corrosion developing along grain boundary quickly. The microstructure was from dynamic recrystallization in hot deformation and remained in the material structure after cold working and heat treatment.
Key words:  copper alloy      corrosion      dynamic recrystallization      fresh water     
Received:  29 December 2010     
ZTFLH: 

TG172.5

 
Corresponding Authors:  ZHAO Yuehong     E-mail:  zhaoyuehong5@126.com

Cite this article: 

ZHAO Yuehong, LIN Leyun, WANG Zhenhai. CHARACTERISTIC OF DYNAMIC RECRYSTALLIZATION AND ITS INFLUENCE ON CORROSION SENSITIVITY OF COPPER ALLOY. J Chin Soc Corr Pro, 2012, 32(2): 102-108.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I2/102

[1] Esteban P B. A continuum theory for dynamic recrystallization with microstructure-related length scales[J].Intern. J. Plast., 1998, 14(4): 319-353

[2] Gourdet S, Montheillet F. A model of continuous dynamic recrystallization[J]. Acta Mater., 2003, 51(9): 2685-2699

[3] Taku S. Dynamic recrystallization microstructures under hot working conditions[J]. J. Mater. Process. Technol., 1995,53(1-2): 349-361

[4] Zhang L W, Lu Y, Deng X H. Simulation of effect of nucleation mechanism on dynamic recrystallization process[J]. J.Dalian Univ. Technol., 2008, 48(3): 351-355

    (张立文, 卢瑜,邓小虎, 不同形核机制下对动态再结晶过程模拟研究[J]. 大连理工大学学报,2008, 48(3): 351-355)

[5] Manonukul A, Dunne P E. Initiation of dynamic recrystallization under inhomogeneous stress states in pure copper[J]. Acta Mater., 1999, 47(17): 4339-4354

[6] Gao W, Belyakov A, Miura H, et al. Dynamic recrystallization of copper polycrystals with different purities[J].Mater. Sci. Eng., 1999, A256: 233-239

[7] Wusatowska-Sarnek A M, Miura H. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Mater. Sci. Eng., 2002, A323: 177-186

[8] Mao W M,Zhao X B. Recrystallization and Grain Growing of Metal Material [M]. Beijing: Metallurgical Industry Press, 1994:12-18

    (毛卫民, 赵新兵. 金属材料的再结晶和晶粒长大[M]. 北京:冶金工业出版社, 1994: 12-18)

[9] Shi F J, Wang J M, Xu X J. The investigation of equal channel angular pressing[J]. Hot Working Technol., 2003, (1): 51-53

    (石凤健, 汪建敏, 许晓静. 等截面角形挤压的研究内容及现状[J].热加工工艺, 2003, (1): 51-53)

[10] Wang J M, Xu X J, Shi F J. Investigation on ultra-fine grain copper by equal channel angular pressing[J]. Hot Working Technol., 2004, (7): 6-10

     (汪建敏, 许晓静, 石凤健.等径角挤压获得超细晶铜的研究[J]. 热加工工艺, 2004, (7): 6-10)

[11] Wang D S , Hou Y W. Investigation of grain refinement on brass processed by ECAP[J]. Forg. Stamp. Technol., 2006, (2): 39-42

     (王德胜,侯英玮. ECAP 法对H62黄铜的晶粒细化研究[J]. 锻压技术,2006, (2): 39-42)

[12] Shi F J, Wang J M, Xu X J. Study on recrystallization behavior of ultra-fine grain copper fabricated by equal channel angular pressing[J]. Hot Working Technol., 2005, 12: 24-26

     (石凤健, 汪建敏, 许晓静. ECAP法制备超细晶铜的再结晶行为研究[J].热加工工艺, 2005, 12: 24-26)

[13] Zhu Y Z Yang Y. Investigation of recrystallization behavior in rapid deformation[J]. Aluminium Working, 2000, 23(3):43-46

     (朱远志, 杨扬.高速变形条件下的动态再结晶机制的研究进展[J]. 铝加工, 2000,23(3):43-46)

[14]  Yang Y, Cheng X L. Current status and trends in researches on adiabatic shearing[J]. Chin. J. Nonferrous Met., 2002,12(3): 401-408

      (杨扬, 程信林.绝热剪切的研究现状及发展趋势[J]. 中国有色金属学报, 2002, 12(3):401-408)

[15] Zhao D M, Dong Q M, Liu P, et al. Precipitation and recrystallization in Cu2Ni2Si alloy during aging treatment[J].Function Mater., 2002, 33(6): 618-621

     (赵冬梅, 董企铭,刘平等. Cu-Ni-Si合金在时效过程中析出与再结晶行为[J]. 功能材料, 2002,33(6): 618-621)

[16] Zhang D Q, He J W. On characterization of microstress measured by X-ray diffraction[J]. Acta Metall. Sin., 1998, 34(12):1273-1278

     (张定铨, 何家文.关于X射线衍射法测定微观应力的表征值的讨论[J]. 金属学报, 1998,34(12): 1273-1278
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!