Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (2): 95-101    DOI:
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EFFECTS ON CORROSION AND CRACKING BEHAVIOR OF X52 PIPELINE STEEL IN H2S ENVIRONMENT
YAO Xuejun, WANG Jianqiu, ZUO Jinghui, HAN En-Hou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(2378KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Three different microstructures of X52 pipeline steel were obtained through different heat treatments. SEM results showed that the three different microstructures were ferrite/band pearlite, martensite/bainite and acicular ferrite/tempered martensite. The effects of microstructures on corrosion and cracking behavior of X52 steel in the H2S-containing solution were studied through potentiodynamic polarization measurements, linear polarization resistance measurements, hydrogen induced cracking (HIC) tests and sulfide stress cracking (SSC) tests. The results showed that martensite/bainite had the highest corrosion rate as well as highest susceptibility to suffer HIC and SSC of all the three microstructures due to its high density tangled dislocation and its high brittlement. Both of ferrite/band pearlite and acicular ferrite/tempered martensite had lower corrosion rate and better HIC and SSC resistance compared to martensite/bainite. However, the acicular ferrite/tempered martensite microstructure had higher resistance of HIC and SSC than ferrite/band pearlite due to the elimination of band structures, grain refinement and the precipitation of fine carbides in the matrix.
Key words:  low alloyed steel      microstructures      H2S      HIC      SSC     
Received:  22 December 2010     
ZTFLH: 

TG172.9

 
Corresponding Authors:  Jianqiu WANG     E-mail:  wangjianqiu@imr.ac.cn

Cite this article: 

YAO Xuejun, WANG Jianqiu, ZUO Jinghui, HAN En-Hou, KE Wei. MICROSTRUCTURE EFFECTS ON CORROSION AND CRACKING BEHAVIOR OF X52 PIPELINE STEEL IN H2S ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(2): 95-101.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I2/95

[1] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking [J]. Mater. Sci. Eng., 2009, A507(1/2): 167-173

[2] Lucio-Garcia M A, Gonzalez J G, Casales M. Effect of heat treatment on H2S corrosion of a micro-alloyed C-Mn steel [J].Corros. Sci., 2009, 51(10): 2380-2386

[3] Ramirez E, Gonzalez-Rodriguez J G, Torres-Islas A, et al. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel [J]. Corros. Sci., 2008, 50(12): 3534-3541

[4] Carneiro R A, Ratnapuli R C, Cunhua-lins V F. The influence of chemical composition and microstructure of API pipeline steels on hydrogen induced cracking and sulfide stress corrosion cracking [J]. Mater. Sci. Eng., 2003, A357(1/2): 104-110

[5] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S-resistant behavior of acicular ferrite and ultrafine ferrite [J]. Mater. Lett., 2002, 57(1): 141-145

[6] Gyu T P, Sung U K, Hwan G J, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of pipeline steel [J]. Corros. Sci., 2008, 50(7):1865-1871

[7] Fragiel A, Serna S, Campillo B, et al. Dissimilar mechanical properties-microstructures microalloyed pipeline steels cracking performance under sour environment [J]. Mater. Sci. Eng.,2007, A467(1/2): 1-7

[8] Fragiel A, Serna S, Perez R. Electrochemical study of two microalloyed pipeline steels in H2S environments [J]. Int. J.Hydrogen Energy, 2005, 30(12): 1303-1309

[9] Kane R D. Roles of H2S in the behavior of engineering alloy [J]. Int. Mater. Rev., 1985, 30(11): 291-301

[10] Arzola S, Mendoza-Florez J, Duran-Romero R, et al. Electrochemical behavior of API X70 steel in hydrogen sulfide-containing solutions [J]. Corrosion, 2006, 62(5): 433-442

[11] Huang H H, Tsay W T, Lee J T. Electrochemical behavior of the simulated heat affected zone of A516 carbon steel in H2S solution [J]. Electrochim. Acta, 1996, 41(7/8): 1191-1199

[12] Bhargava G, Ramanarayanan T A, Smith S N, et al. Inhibition of iron corrosion by imidazole: an electrochemical and surface science study [J]. Corrosion, 2009, 65(5): 308-317

[13] Bernstein I M. Hydrogen-induced cracking in iron: morphology and crack path dependence [J]. Metall. Mater. Trans.,1970, 1(11)B: 3143-3150

[14] Mclntyre D R, Boah J K. Review of sour service definitions[J]. Mater. Performance. 1996, 35(88): 54-58

[15] Hanninen H E, Lee T C, Robertson I M, et al. In situ observations on the role of hydrogen on deformation and fracture of A5338 pressure vessel steel [J]. J. Mater. Eng.Perform., 1993, 2(6): 807-817

[16] Oriani R A. Hydrogen embrittlement of steels [J]. Annu.Rev. Mater. Sci., 1978, 8: 327-357

[17] Li M, Li X G, Chen H. A review on corrosion behavior and mechanism of metals wet H2S [J]. Corros. Sci. Prot. Technol.,2005, 17(2): 107-111

     (李明, 李晓刚, 陈华.在湿H2S环境中金属腐蚀行为和机理研究概述 [J].腐蚀科学与防护技术, 2005, 17(2): 107-111)

[18] Tang J Q, Gong J M, Zhang X C, et al. Comparison on the cracking susceptibility of different low alloy steel weldments exposed to the environment containing wet H2S [J]. Eng. Fail.Anal., 2006, 13(7): 1057-1064

[19] Wan K K, Seong U K, Boo Y Y, et al. Effect of environment and metallurgical factors on hydrogen induced cracking of HSLA steel[J]. Corros. Sci., 2008, 50(12): 3336-3342

[20] Zhao M C, Shan Y Y, Li Y H, et al. Effect of microstructure on sulfide stress corrosion cracking of pipeline steels [J]. Acta Metall. Sin., 2001, 37(10): 1087-1092

     (赵明纯, 单以银, 李玉海等.显微组织对管线钢硫化物应力腐蚀开裂的影响[J]. 金属学报, 2001, 37(10):1087-1092)

[21] Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel [J]. J. Mater. Process. Technol.,2009, 209 (8): 4027-4035

[22] Al-Mansour M, Alfantazi A M, Ei-boujdaini M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel [J]. Mater. Des., 2009, 30(10): 4088-4094

[23] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S resistant behavior of acicular ferrite and ultrafine ferrite[J]. Mater. Lett., 2002, 57(1): 141-145

[24] Charbonnier J C, Margot-Marette H, Brass A M, et al. Sulfide stress cracking of high strength modified Cr-Mo steels [J].Metall. Mater. Trans., 1985, 16(5)A: 935-944\par
[1] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[2] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[7] Bin JIANG, Lilan ZENG, Tao LIANG, Haobo PAN, Yanxin QIAO, Jing ZHANG, Ying ZHAO. Directional Electrodeposition of Micro-nano Superhyd-rophobic Coating on 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[8] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[9] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[10] Yangyang DONG, Feng HUANG, Pan CHENG, Qian HU, Jing LIU. Evolution of Corrosion Product Scales on an Acid Proof Pipeline Steel X65 MS in H2S Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[11] Zhiping ZHU,Zhaohui YIN,Sen LIU,Jianfeng XIAO. Corrosion Behavior and Prediction Model for Copper Exposed in a Simulated High H2S Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[12] Fengping WANG,Lan LIU,Yanwei DING,Suijun HU,Zhaobin LIU,Dan LIU,Li ZHANG. Simulation of Carbon Steel Corrosion in Oil-gas Field Produced Waters Containing Hydrogen Sulfide[J]. 中国腐蚀与防护学报, 2015, 35(3): 251-256.
[13] XING Yunying, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LIU Ranke, ZHU Min. Influence of H2S Concentration and pH Value on Corrosion Behavior of Weld Joint of X65 Subsea Pipeline Steel[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
[14] WANG Bin, ZHOU Cui, LI Liangjun, HU Hongmei, ZHU Jiaxiang. Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[15] WANG Feng,,WEI Chunyan,HUANG Tianjie,,CUI Zhongyu,LI Xiaogang. Effect of H2S Partial Pressure on Stress Corrosion Cracking Behavior of 13Cr Stainless Steel in Annulus Environment Around CO2 Injection Well[J]. 中国腐蚀与防护学报, 2014, 34(1): 46-52.
No Suggested Reading articles found!