Please wait a minute...
J Chin Soc Corr Pro  2005, Vol. 25 Issue (1): 1-6     DOI:
Research Report Current Issue | Archive | Adv Search |
SLXTEEN-YEAR ATMOSPHERIC CORRSION EXPOSURE STUDY OF STEELS
Caifeng Liang;Wentai Hou
山东青岛钢铁研究总院海洋腐蚀研究所
Download:  PDF(177KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Sixteen-year atmospheric exposures of 17 steels at 7 sites were made.Power function D=Atn can describe the corrosion process quite well.The pattern of corrosion development in te early stage is different from that in the long-term exposure.It is not proper to determine corrosivity of an environment by means of one-year exposure result,a method stipulated by ISO - 9226. It is also not correct to predict the long - term coorrosionresults by short - term exposurt.The major damaging pollution factors are sulphur dioxide and chloride ion. The effect of sulphur dioxide is serious in the early exposure years.It is no longer so in the later years.Environment factor of humid hot os much more important in long run.In addition of chloride ion pollution,an extradinary high corrosion can be resulted in mild steels.
Key words:  atospheric corrosion      steel      environment factor      
Received:  15 July 2003     
ZTFLH:  TG172.3  
Corresponding Authors:  Caifeng Liang   

Cite this article: 

Caifeng Liang; Wentai Hou. SLXTEEN-YEAR ATMOSPHERIC CORRSION EXPOSURE STUDY OF STEELS. J Chin Soc Corr Pro, 2005, 25(1): 1-6 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2005/V25/I1/1

[1]LarrabeeCP ,CoburnSK .Theatmosphericcorrosionofsteelsasinfluencedbychangesinchemicalcomposition[A].Proc.1stInt.Cong.Met.Corros.[C].Butterworth,London,UK ,1962,276
[2]KuceraKnotkovaD ,GullmanJ,HollerP .Corrosionofstructuralmetalsinatmosphereswithdifferentcorrosivityat8years’expo sureinSwedenandCzechoslovakia[A].Proc.10thInt.Cong.Met.Corros.[C].OxfordandIDH ,Madras,India,1987:167
[3]Shastry,FrielJJ ,TownsendHE .Sixteen-yearcorrosionperfor manceofweatheringsteelsinmarine,ruralandindustrialenviron ments[A].DegradationofMetalsintheAtmosphere[C].ASTMSTP 965,WestConshohocken,PA ,ASTM .1988:5
[4]HouWT ,YuJD ,LiangCF .Atmosphericcorrosionofcarbonandlowalloysteels[J].J.Chin.Soc.Corros.Prot.,1993,13(4):291(侯文泰,于敬敦,梁彩凤.碳钢及低合金钢的大气腐蚀[J].中国腐蚀与防护学报,1993,13(4):291)
[5]LiangCF ,HouWT .Atmosphericcorrosionexposurestudyofsteels[J].Corros.Sci.Prot.Technol.,1995,7(3):182(梁彩凤,侯文泰.碳钢及低合金钢8年大气暴露腐蚀研究[J].腐蚀科学与防护技术,1995,7(3):182)
[6]HouWT ,LiangCF .Eight-yearatmosphericexposureofsteelsinChina[J].Corrosion,1999,55(1):65
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[6] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[7] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[8] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[9] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[10] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[11] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[12] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[13] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[14] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[15] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
No Suggested Reading articles found!