Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 807-814    DOI: 10.11902/1005.4537.2023.233
Current Issue | Archive | Adv Search |
Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel
LONG Wujian1,2, TANG Jie1, LUO Qiling1,2, QIU Zhanghong3, WANG Hailong3()
1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
2. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, China
3. Guangdong Yuheng Engineering Testing Technology Co., Ltd., Guangzhou 511356, China
Cite this article: 

LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 807-814.

Download:  HTML  PDF(6434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion of metallic materials poses a threat to the safety and reliability of metallic facility and equipment, as well as exacerbating environmental pollution and economic losses. However, the use of sustainable, renewable and economical raw materials to prepare green corrosion inhibitors is still a challenging issue at this stage. Herein, biomass-based carbon dots (CDs) were prepared with lychee leaves as raw material, and their corrosion inhibition performance on Q235 steel in 1 mol/L HCl was assessed by means of mass loss measurement, electrochemical impedance spectroscope, and potentiodynamic polarization measurement. Results indicate that the obtained biomass-derived CDs contain numerous oxygen and nitrogen functional groups, which enable them to remain stable in 1 mol/L HCl solution and exhibit long-term stable corrosion inhibition performance.

Key words:  carbon dots      corrosion inhibitor      absorption      electrochemical measurements     
Received:  27 July 2023      32134.14.1005.4537.2023.233
ZTFLH:  TG142.71  
Fund: National Natural Science Foundation of China-Shandong Joint Fund(U2006223);Guangdong Key Areas R & D Project(2019B111107003);Guangdong Foundation and Applied Basic Research Fund Project(2023A1515012136)
Corresponding Authors:  WANG Hailong, E-mail: 168680212@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.233     OR     https://www.jcscp.org/EN/Y2024/V44/I3/807

Fig.1  TEM image of CDs
Fig.2  FTIR spectrum of CDs
Fig.3  UV-Vis absorption spectrum (a) and PL spectra with different excitation wavelengths (b) of 1 mg/mL CDs aqueous solution. The inset photo-graphs shown in Fig.3a are 1 mg/mL CDs aque-ous solution taken under sunlight and a 365 nm UV light
Fig.4  Variations of corrosion rate (a) and inhibition efficiency (b) vs immersion time of Q235 steel in 1 mol/L HCl solution with different contents of CDs
Fig.5  Bode (a) and Nyquist (b) plots of Q235 steel in 1 mol/L HCl solution and its equivalent circuit shown in Fig.5b

C

mg·L-1

Rs

Ω·cm2

Rp

Ω·cm2

CPEdl

μF·cm-2

χγ
Blank1.6515.83193.8500.04042-
251.51339.6976.8920.0615959.41%
501.79694.8171.1870.0485783.30%
1001.912161.3741.8350.063490.19%
2005.451353.2237.1270.0069795.51%
Table 1  Fitting parameters of Q235 steel in various solutions
Fig.6  PDP curves of Q235 steel in 1 mol/L HCl solution with different concentrations of CDs

C

mg·L-1

Ecorr

mV/SCE

Icorr

μA·cm-2

-βc

mV·dec-1

βa

mV·dec-1

IE
Blank-468891.10168179-
25-479254.2114715271.47%
50-491154.2112413082.69%
100-49431.2810612996.49%
200-49620.4710411197.70%
Table 2  Electrochemical parameters obtained from PDP
Fig.7  Langmuir adsorption isotherm of CDs on the surface of Q235 steel
Fig.8  SEM (a-c) and EDS (d-f) images of Q235 steel samples: (a, d) original state, (b, e) immersion in 1 mol/L HCl without CDs for 96 h, (c, f) immersion in 1 mol/L HCl with 200 mg/L CDs for 96 h
Fig.9  FTIR spectra of CDs as well as Q235 steel surface before and after 96 h immersion in 1 mol/L HCl with 200 mg/L CDs
1 Yang D P, Ye Y W, Su Y, et al. Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel [J]. J. Clean Prod., 2019, 229: 180
doi: 10.1016/j.jclepro.2019.05.030
2 Zhang Q H, Hou B S, Li Y Y, et al. Two amino acid derivatives as high efficient green inhibitors for the corrosion of carbon steel in CO2-saturated formation water [J]. Corros. Sci., 2021, 189: 109596
doi: 10.1016/j.corsci.2021.109596
3 Li X, Wang X Y, Nawaz H, et al. The choice of ionic liquid ions to mitigate corrosion impacts: the influence of superbase cations and electron-donating carboxylate anions [J]. Green Chem., 2022, 24: 2114
doi: 10.1039/D1GC04173H
4 Baran E, Cakir A, Yazici B. Inhibitory effect of Gentiana olivieri extracts on the corrosion of mild steel in 0.5 M HCl: Electrochemical and phytochemical evaluation [J]. Arab. J. Chem., 2019, 12(8): 4303
doi: 10.1016/j.arabjc.2016.06.008
5 He C, Xu P, Zhang X H, et al. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective [J]. Carbon, 2022, 186: 91
doi: 10.1016/j.carbon.2021.10.002
6 Long W J, Li X Q, Xu P, et al. Facile and scalable preparation of carbon dots with Schiff base structures toward an efficient corrosion inhibitor [J]. Diam. Relat. Mater., 2022, 130: 109401
doi: 10.1016/j.diamond.2022.109401
7 Zhu M Y, Guo L, He Z Y, et al. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study [J]. J. Colloid Interface Sci., 2022, 608: 2039
doi: 10.1016/j.jcis.2021.10.160
8 Cui M J, Ren S M, Zhao H C, et al. Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1 M HCl solution [J]. Appl. Surf. Sci., 2018, 443: 145
doi: 10.1016/j.apsusc.2018.02.255
9 Guo L, Zhu M Y, He Z Y, et al. One-pot hydrothermal synthesized nitrogen and sulfur codoped carbon dots for acid corrosion inhibition of Q235 steel [J]. Langmuir, 2022, 38(13): 3984
doi: 10.1021/acs.langmuir.1c03289
10 Xu Q J, Ge K, Zhang S T, et al. Understanding the adsorption and inhibitive properties of Nitrogen-Doped Carbon Dots for copper in 0.5 M H2SO4 solution [J]. J. Taiwan Inst. Chem. Engineers, 2021, 125: 23
doi: 10.1016/j.jtice.2021.05.050
11 Zhang Y, Tan B C, Zhang X, et al. Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution [J]. J. Mol. Liq., 2021, 338: 116702
doi: 10.1016/j.molliq.2021.116702
12 Zhang Y, Zhang S T, Tan B C, et al. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution [J]. J. Colloid Interface Sci., 2021, 604: 1
doi: 10.1016/j.jcis.2021.07.034
13 Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
doi: 10.1016/j.corsci.2019.108193
14 Cen H Y, Chen Z Y, Guo X P. Corrosion inhibition performance and mechanism of carbon dots as corrosion inhibitors [J]. Surf. Tech., 2020, 49(11): 13
岑宏宇, 陈振宇, 郭兴蓬. 碳量子点缓蚀剂的缓蚀行为与机理研究 [J]. 表面技术, 2020, 49(11): 13
15 Cen H Y, Zhang X, Zhao L, et al. Carbon dots as effective corrosion inhibitor for 5052 aluminium alloy in 0.1 M HCl solution [J]. Corros. Sci., 2019, 161: 108197
doi: 10.1016/j.corsci.2019.108197
16 Ye Y W, Jiang Z L, Zou Y J, et al. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 43: 144
doi: 10.1016/j.jmst.2020.01.025
17 Zhu L L, Shen D K, Wu C F, et al. State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots [J]. Ind. Eng. Chem. Res., 2020, 59: 22017
doi: 10.1021/acs.iecr.0c04760
18 Chen W F, Li D J, Tian L, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging [J]. Green Chem., 2018, 20: 4438
doi: 10.1039/C8GC02106F
19 Fang M Y, Wang B Y, Qu X L, et al. State-of-the-art of biomass-derived carbon dots: Preparation, properties, and applications [J]. Chin. Chem. Lett., 2024, 35: 108423
doi: 10.1016/j.cclet.2023.108423
20 Ding H, Wei J S, Zhang P, et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths [J]. Small, 2018, 14: 1800612
doi: 10.1002/smll.v14.22
21 Li W D, Liu Y, Wang B Y, et al. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging [J]. Chin. Chem. Lett., 2019, 30: 2323
doi: 10.1016/j.cclet.2019.06.040
22 Wang L, Wang Y L, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties [J]. Nat. Commun., 2014, 5: 5357
doi: 10.1038/ncomms6357 pmid: 25348348
23 Xu Y L, Wang B Y, Zhang M M, et al. Carbon dots as a potential therapeutic agent for the treatment of cancer-related anemia [J]. Adv. Mater., 2022, 34: 2200905
doi: 10.1002/adma.v34.19
24 Wang B Y, Song H Q, Tang Z Y, et al. Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation [J]. Nano Res., 2022, 15: 942
doi: 10.1007/s12274-021-3579-5
25 Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J]. ACS Nano, 2016, 10: 484
doi: 10.1021/acsnano.5b05406 pmid: 26646584
26 Chen B B, Chang S, Jiang L, et al. Reversible polymerization of carbon dots based on dynamic covalent imine bond [J]. J. Colloid Interface Sci., 2022, 621: 464
doi: 10.1016/j.jcis.2022.04.089
27 Su Y, Qiu S H, Yang D P, et al. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH [J]. J. Hazard. Mater., 2020, 391: 122215
doi: 10.1016/j.jhazmat.2020.122215
28 Cui M J, Ren S M, Xue Q J, et al. Carbon dots as new eco-friendly and effective corrosion inhibitor [J]. J. Alloy. Compd., 2017, 726: 680
doi: 10.1016/j.jallcom.2017.08.027
29 Luo J X, Cheng X, Chen X H, et al. The effect of N and S ratios in N, S co-doped carbon dot inhibitor on metal protection in 1 M HCl solution [J]. J. Taiwan Inst. Chem. Engineers, 2021, 127: 387
doi: 10.1016/j.jtice.2021.08.023
30 Abdelsalam M M, Bedair M A, Hassan A M, et al. Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution [J]. Arab. J. Chem., 2022, 15: 103491
doi: 10.1016/j.arabjc.2021.103491
31 Jiang B K, Chen A Y, Gu J F, et al. Corrosion resistance enhancement of magnesium alloy by N-doped graphene quantum dots and polymethyltrimethoxysilane composite coating [J]. Carbon, 2020, 157: 537
doi: 10.1016/j.carbon.2019.09.013
32 Daoud D, Douadi T, Hamani H, et al. Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study [J]. Corros. Sci., 2015, 94: 21
doi: 10.1016/j.corsci.2015.01.025
33 Ahamad I, Prasad R, Quraishi M A. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions [J]. Corros. Sci., 2010, 52: 933
doi: 10.1016/j.corsci.2009.11.016
34 Kıcır N, Tansuğ G, Erbil M, et al. Investigation of ammonium (2,4-dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel [J]. Corros. Sci., 2016, 105: 88
doi: 10.1016/j.corsci.2016.01.006
35 Saraswat V, Yadav M. Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor [J]. Colloid. Surf., 2021, 627A: 127172
36 Du R G, Liu Y, Lin C J. Effect of chlorine ions on the corrosion behavior of reinforcing steel in concrete [J]. Mater. Prot., 2006, 39(6): 45
杜荣归, 刘 玉, 林昌健. 氯离子对钢筋腐蚀机理的影响及其研究进展 [J]. 材料保护, 2006, 39(6): 45
37 Liu Y, Guo X X, Liu D L, et al. Inhibition effect of sparteine isomers with different stereochemical conformations on the corrosion of mild steel in hydrochloric acid solution [J]. J. Mol. Liq., 2022, 345: 117833
doi: 10.1016/j.molliq.2021.117833
[1] XIE Hui, YU Chao, HUA Jing, JIANG Xiu. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[2] LIU Zebang, RAN Boyuan, PEI Heng, LUO Kailin, ZHAO Zhibin, HAN Peng, QIANG Yujie. Synergistic Corrosion Inhibition Effect of a Compound Inhibitor for Aluminum[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322.
[3] WANG Quanrun, HOU Jin, HOU Baorong, TIAN Huiwen. Research Progress of Analytical Methods for Vapor Phase Inhibitors[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[4] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[5] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[6] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[7] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[8] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[9] ZHOU Kun, LIU Xinhua, LIU Shuai. Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[10] HUANG Miao, WANG Lizi, MA Xiaoqing, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Nd(NO3)3 on Aluminum in HCl Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[11] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[12] WU Hao, DENG Shuduan, LI Xianghong. Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2023, 43(1): 77-86.
[13] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[14] LIAN Yubo, ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei. Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
[15] LUO Weiping, LUO Xue, SHI Yueting, WANG Xinchao, ZHANG Shengtao, GAO Fang, LI Hongru. Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
No Suggested Reading articles found!