Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 745-754    DOI: 10.11902/1005.4537.2023.173
Current Issue | Archive | Adv Search |
Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions
XIE Hui1,2,3, YU Chao1,2,3, HUA Jing1,2,3, JIANG Xiu1,2,3()
1. State Key Laboratory of Chemical Safety, Qingdao 266100, China
2. SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266100, China
3. Registration Center for Chemicals, Ministry of Emergency Management, Qingdao 266100, China
Cite this article: 

XIE Hui, YU Chao, HUA Jing, JIANG Xiu. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 745-754.

Download:  HTML  PDF(9194KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NH4Cl was one of the important factors causing corrosion of tubing steel in shale oil environment. Herewith, the effect of NH+4 concentration on the corrosion behavior of N80 steel in 3%NaCl solution saturated with CO2 was studied by means of mass loss method, electrochemical methods, scanning electron microscope (SEM), 3D profilometer, X-ray diffraction(XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that NH+4 concentration had a dual effect on the corrosion rate of N80 steel, i.e. promoting and inhibiting the corrosion rate. When the NH+4 concentration was 0~500 mg/L, the uniform corrosion rate of N80 steel increased with the increasing NH+4 concentration, while in the NH+4 concentration range of 1000~2000 mg/L, the uniform corrosion rate of N80 steel decreased with the increasing NH+4 concentration, however, the pitting corrosion rate showed a similar trend as the uniform corrosion. When the NH+4 concentration was 500 mg/L, the uniform corrosion rate and pitting corrosion rate of N80 steel were the highest. Competition adsorption occurred between NH+4 and Cl- on the metal surface at NH+4 concentrations ≤ 500 mg/L, while NH+4 adsorption inhibited corrosion when NH+4 concentration exceeded 500 mg/L.

Key words:  N80 steel      saturated CO2 environment      NH+4 corrosion      NH+4 absorption     
Received:  22 May 2023      32134.14.1005.4537.2023.173
ZTFLH:  TG174  
Fund: SINOPEC Innovation Scheme(320144)
Corresponding Authors:  JIANG Xiu, E-mail: jiangx.qday@sinopec.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.173     OR     https://www.jcscp.org/EN/Y2024/V44/I3/745

Fig.1  Metallographic microstructure of N80 steel
Fig.2  Corrosion rates of N80 steel in 3%NaCl solutions with different NH+4 concentrations
Fig.3  Self corrosion potentials of N80 steel in 3%NaCl solutions with different NH+4 concentrations
Fig.4  Linear polarization resistances (a) and corrosion rates (b) of N80 steel in 3%NaCl solutions with different NH+4 concentrations
Fig.5  General (a) and detail (b) views of polarization curves of N80 steel in 3%NaCl solutions with different NH+4 concentrations
Fig.6  Nyquist (a1~e1) and Bode (a2~e2) diagrams of N80 steel in 3%NaCl solutions containing 0 mg/L (a), 150 mg/L (b), 500 mg/L (c), 1000 mg/L (d) and 2000 mg/L (e) NH+4
Fig.7  Equivalent circuit diagram used for EIS fitting analysis
NH+4 concentration mg·L-1

Time

h

Rs

Ω·cm2

CPEf

F·cm-2

n1

Rm

Ω·cm2

CPEdl

F·cm-2

n2

Rct

Ω·cm2

0729.2414.649 × 10-40.896016812.009 × 10-30.39112197
150729.5776.201 × 10-40.914822608.881 × 10-31264.8
500727.6706.670 × 10-40.914410141.008 × 10-30.49641206
1000724.8463.522 × 10-40.938232403.261 × 10-30.7541784.8
2000724.9763.888 × 10-40.926839362.684 × 10-30.69162024
Table 1  Fitting data of EIS of N80 steel
Fig.8  (Rm + Rct) values of N80 steel in 3%NaCl solutions with different NH+4 concentrations
Fig.9  Corrosion morphologies (a1~e1), 3D contour graphics (a2~e2) and elemental compositions (a3~e3) of N80 steel after immersion in 3%NaCl solutions containing 0 mg/L (a), 150 mg/L (b), 500 mg/L (c), 1000 mg/L (d) and 2000 mg/L (e) NH+4
Fig.10  XRD patterns of N80 steel after immersion in 3%NaCl solutions containing 0 and 2000 mg/L NH+4
Fig.11  XPS fine peaks of Fe 2p (a), C 1s (b) and O 1s (c), and survey spectrum (d) of N80 steel after immersion in 3%NaCl solutions with different NH+4 concentrations
Fig.12  Adsorption mechanism schematic of N atoms on N80 steel surface in 3%NaCl solutions with low concentration (a) and high concentration (b) of NH+4
1 Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811
孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811
doi: 10.11902/1005.4537.2020.172
2 Huang J H, Yuan X, Chen W, et al. Effect of temperature on corrosion behavior of pipeline steels N80 and TP125V in artificial CO2-saturated fracturing fluid of shale gas [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 251
黄家和, 袁 曦, 陈文 等. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2023, 43: 251
doi: 10.11902/1005.4537.2022.076
3 An D P, Feng Y J. Prospective prospect of shale oil exploration and development [N]. China Electric Power News, 2022-09-05(003)
安栋平, 冯义军. 页岩油勘探开发前景可期 [N]. 中国电力报, 2022-09-05(003)
4 Qiao R W, Li F X, Zhang S C, et al. CO2 mass transfer and oil replacement capacity in fractured shale oil reservoirs: from laboratory to field [J]. Front. Earth Sci., 2021, 9: 794534
doi: 10.3389/feart.2021.794534
5 Lan Y, Yang Z Q, Wang P, et al. A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding [J]. Fuel, 2019, 238: 412
doi: 10.1016/j.fuel.2018.10.130
6 Zhang Y X, He J M, Li X, et al. Experimental study on the supercritical CO2 fracturing of shale considering anisotropic effects [J]. J. Petrol. Sci. Eng., 2019, 173: 932
doi: 10.1016/j.petrol.2018.10.092
7 Xiong Q, Hu J Y, Gu C R, et al. The study of under deposit corrosion of carbon steel in the flowback water during shale gas production [J]. Appl. Surf. Sci., 2020, 523: 146534
doi: 10.1016/j.apsusc.2020.146534
8 Zhao G X, Wang Y C, Zhang S Q, et al. Influence mechanism of H2S/CO2-charging on corrosion of J55 steel in an artificial solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 785
赵国仙, 王映超, 张思琦 等. H2S/CO2对J55钢腐蚀的影响机制 [J]. 中国腐蚀与防护学报, 2022, 42: 785
doi: 10.11902/1005.4537.2021.262
9 Wu G Y, Zhao W W, Wang Y R, et al. Analysis on corrosion-induced failure of shale gas gathering pipelines in the southern Sichuan Basin of China [J]. Eng. Fail. Anal., 2021, 130: 105796
doi: 10.1016/j.engfailanal.2021.105796
10 Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253: 8371
doi: 10.1016/j.apsusc.2007.04.011
11 Xing X S, Fan B T, Zhu X Y, et al. Corrosion characteristics of P110SS casing steel for ultra-deep well in artificial formation water with low H2S and high CO2 content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 611
幸雪松, 范白涛, 朱新宇 等. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2023, 43: 611
doi: 10.11902/1005.4537.2022.225
12 Cheng Y P, Bai Y, Li Z L, et al. The corrosion behavior of X65 steel in CO2/oil/water environment of gathering pipeline [J]. Anti-Corros. Methods Mater., 2019, 66: 174
doi: 10.1108/ACMM-07-2018-1969
13 Alaba P A, Adedigba S A, Olupinla S F, et al. Unveiling corrosion behavior of pipeline steels in CO2-containing oilfield produced water: towards combating the corrosion curse [J]. Crit. Rev. Solid State Mater. Sci., 2020, 45: 239
doi: 10.1080/10408436.2019.1588706
14 Ni Y Y, Yao L M, Sui J L, et al. Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback water/produced water [J]. Nat. Gas Geosci., 2022, 33: 78
倪云燕, 姚立邈, 隋建立 等. 页岩气压裂返排液/采出水同位素地球化学特征与鉴别指标 [J]. 天然气地球科学, 2022, 33: 78
15 Zhang Y L, Han L, Liu X H. Corrosion behavior of several kinds of steel in NH4Cl environment [J]. Corros. Prot., 2014, 35: 711
张艳玲, 韩 磊, 刘小辉. 几种钢材在NH4Cl环境中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 711
16 Li R D, Huang H, Wang X D, et al. Effect of ammonium salt on corrosion of pipelines and components in a crude oil distillation column: Electrochemical and AIMD studies [J]. Corros. Sci., 2022, 203: 110362
doi: 10.1016/j.corsci.2022.110362
17 Wang H B, Yu J P, Lu C S. Investigation of the corrosion behavior of mild steel in the NH4Cl/CO2 corrosive medium [J]. Trans. Indian Inst. Met., 2021, 74: 2631
doi: 10.1007/s12666-021-02303-9
18 Duan Y F, Zhao X Y, Li C F, et al. Study on corrosion of carbon steel and alloy steel in ammonium chloride solution [J]. Corros. Prot. Petrochem. Ind., 2017, 34(1): 8
段永锋, 赵小燕, 李朝法 等. 碳钢及合金钢在氯化铵溶液中腐蚀规律研究 [J]. 石油化工腐蚀与防护, 2017, 34(1): 8
19 Toba K, Ueyama M, Kawano K, et al. Corrosion of carbon steel and alloys in concentrated ammonium chloride solutions [J]. Corrosion, 2012, 68: 1049
doi: 10.5006/0587
20 Gu Y. Research on the corrosion behavior and corrosion resistance mechanism of low C medium Cr steel in CO2 EOR gathering & transportation environment [D]. Beijing: University of Science and Technology Beijing, 2020
顾 洋. 低C中Cr钢在CO2驱集输环境中的腐蚀行为及耐蚀机制研究 [D]. 北京: 北京科技大学, 2022
21 Human A M, Exner H E. Electrochemical behaviour of tungsten-carbide hardmetals [J]. Mater. Sci. Eng., 1996, 209A: 180
22 Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction [J]. Corros. Sci., 2017, 129: 146
doi: 10.1016/j.corsci.2017.10.005
23 Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41: 117
doi: 10.1016/S0010-938X(98)00104-8
24 Mora-Mendoza J L, Turgoose S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions [J]. Corros. Sci., 2002, 44: 1223
doi: 10.1016/S0010-938X(01)00141-X
25 Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
doi: 10.5006/1.3277305
26 Wang H B, Li Y, Cheng G X, et al. Electrochemical investigation of corrosion of mild steel in NH4Cl solution [J]. Int. J. Electrochem. Sci., 2018, 13: 5268
doi: 10.20964/2018.06.05
27 Jiang X. Corrosion behaviors and inhibition mechanisms for CO2 corrosion of N80 steel under flowing conditions [D]. Shenyang: Institute of Metals, Chinese Academy of Sciences, 2005
蒋 秀. 流动条件下N80钢的CO2腐蚀行为及缓蚀机理研究 [D]. 沈阳: 中国科学院金属研究所, 2005
[1] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[2] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[3] LU Zhaoling, GUO Xingpeng. INHIBITION PERFORMANCE AND MECHANISM OF LAURIC ACID IN CO2 SATURATED NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(6): 475-480.
[4] LIU Dong QIU Yubing GUO Xingpeng. CORROSION ELECTROCHEMICAL BEHAVIOR OF N80 STEEL IN CO2/HAc ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2009, 29(1): 44-49.
[5] . Effect of Temperature on the Electrochemical Properties of CO2 Corrosion on N80 Steel in Stratum Water[J]. 中国腐蚀与防护学报, 2008, 28(2): 104-107 .
[6] ;. Corrosion Behavior of N80 Steel in Simulated Water from deep Gaswell Containing Carbon Dioxide[J]. 中国腐蚀与防护学报, 2007, 27(1): 8-13 .
[7] Changfeng Chen; Minxv Lu; Guoxian Zhao. CHARACTERISTICS OF CO2 CORROSION SCALES ON 1%Cr-CONTAINING N80 STEEL[J]. 中国腐蚀与防护学报, 2003, 23(6): 330-334 .
[8] Changfeng Chen; Minxv Lu; Guoxian Zhao. ELECTROCHEMICAL CHARACTERISTICS OF CO2 CORROSIONOF WELL TUBE STEELS WITH CORROSION SCALES[J]. 中国腐蚀与防护学报, 2003, 23(3): 139-143 .
[9] Changfeng Chen; Minxv Lu; Guoxian Zhao. BEHAVIOR OF CO2 PITTING CORROSION OF N80 STEEL[J]. 中国腐蚀与防护学报, 2003, 23(1): 21-25 .
[10] Changfeng Chen; Guoxian Zhao; Milin Yan. CHARACTERISTICS OF CO2 CORROSION SCALES ON Cr-CONTAINING N80 STEEL[J]. 中国腐蚀与防护学报, 2002, 22(6): 335-338 .
[11] Changfeng Chen; Guoxian Zhao; MinXV Lu. STUDY OF CO2 CORROSION SCALES ON N80 STEEL[J]. 中国腐蚀与防护学报, 2002, 22(3): 143-147 .
No Suggested Reading articles found!