Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1237-1246    DOI: 10.11902/1005.4537.2022.351
Current Issue | Archive | Adv Search |
Research Progress on Carbon Dots in Field of Metal Corrosion and Protection
FAN Yufang1,2,3, ZHANG Yafei4, YIN Liusen1,2,3, ZHAO Conghui1,2,3, HE Yanbin1,2,3, ZHANG Chuanxiang1,2,3()
1.School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
2.Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454000, China
3.Collaborative Innovation Center of Coal Safety Production and Clean and Efficient Utilization Jointly Built by the Ministry and the Province, Jiaozuo 454000, China
4.Ningbo Lvdong Fuel Cell Co., Ltd., Ningbo 315300, China
Cite this article: 

FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1237-1246.

Download:  HTML  PDF(4847KB) 
Export:  BibTeX | EndNote (RIS)      

How to avoid metal corrosion has became a key issure due to the widespread applications of various metals, therefore, it is urgent to develop the low toxicity and high-efficiency anticorrosive materials. Carbon dots (CDs), as a new zero-dimensional member of the carbon family, possesses the advantages of strong adsorption capacity, low toxicity, high solubility, good stability, and abundant surface functional groups, attract extensive attentions of researchers in the field of corrosion and protection of metallic materials. Herein, this work systematically elaborates the research progress of carbon dots especially as water-phase corrosion inhibitors and coating fillers. This review introduces corrosion inhibition effect about different heteroatom-doped carbon dots (nitrogen doped carbon dots, cerium and nitrogen co-doped carbon dots and nitrogen and sulfur co-doped carbon dots) on various metals. The corresponding corrosion inhibition mechanism can be summarized as that the protective film is formed through adsorption of CDs (physical adsorption or chemical adsorption) on surface of metals. Furthermore, we summarize the anti-corrosion mechanisms and research achievements of carbon dots as solvent-based and water-based coating fillers. By virtue of its small size and plentiful of functional groups, CDs can fill into micropores and fix the defects of coating so that to improve the comprehensive anti-corrosion performances of the composite coating. Finally, the challenges that carbon dots face in the field of corrosion and protection are also discussed.

Key words:  carbon dots      inhibitors      filler for coating      anticorrosion     
Received:  14 November 2022      32134.14.1005.4537.2022.351
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(52074109)
Corresponding Authors:  ZHANG Chuanxiang, E-mail:

URL:     OR

Fig.1  Corrosion inhibition mechanism of N-CDs on carbon steel[56]
Fig.2  Morphologies of N-CDs1 (a), N-CDs2 (b),N-CDs3 (c) and schematic illustration of inhibition mechanism of N-CDs2 (d)[58]
Fig.3  Corrosion inhibition mechanism of N-CDs on Cu[69]
Fig.4  Corrosion inhibition experiment of Ce@N-CDs on carbon steel: (a) schematic representation of the protective mechanism, (b) Langmuir adsorption plot, (c) Tafel curves[61]
Raw materialsConcentration mg·L-1Corrosion mediumInhibition efficiencyReference
EDTA, PA, urea10015% HCl90%[75]
p-phenylenediamine2001 mol/L HCl88%[76]
Tryptophan2001 mol/L HCl96%[77]
Citric acid and L-histidine2001 mol/L HCl96%[78]
Citric acid and imidazole2001 mol/L HCl93%[79]
Citric acid and urea300.5 mol/L H2SO495%[80]
Ammonium citrate2001 mol/L HCl94%[81]
Methacrylic acid and n-butylamine2001 mol/L HCl95%[82]
Table 1  Corrosion inhibition efficiency of CDs
Fig.5  Corrosion inhibition mechanism of N,S-CDs on carbon steel (a) and Cu (b) [83,85]
Fig.6  Corrosion inhibition mechanism of N,S-CDs on Al (a) and Mg (b)[48, 87]
1 Wen Y H. Corrosion and protection analysis of metal materials [J]. World Nonferrous Met., 2021, (12): 192
文杨昊. 金属材料的腐蚀与防护分析 [J]. 世界有色金属, 2021, (12): 192
2 Hu Y L. Research progress of waterborne epoxy resin anticorrosion coatings [J]. Guangdong Chem. Ind., 2013, 40(7): 72
胡永玲. 水性环氧防腐涂料的研究进展 [J]. 广东化工, 2013, 40(7): 72
3 Mourya P, Banerjee S, Singh M M. Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor [J]. Corros. Sci., 2014, 85: 352
doi: 10.1016/j.corsci.2014.04.036
4 Luo W P, Luo X, Shi Y T, et al. Preparation and corrosion inhibition of super hydrophobic adsorption film of lotus leaf extract on mild steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 903
罗为平, 罗 雪, 石悦婷 等. Q235钢表面的超疏水吸附层形成与缓蚀研究 [J]. 中国腐蚀与防护学报, 2022, 42: 903
doi: 10.11902/1005.4537.2021.296
5 Li X H, Xu X, Lei R, et al. Synergistic inhibition effect of walnut green husk extract complex inhibitors on steel in phosphoric acid [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 358
李向红, 徐 昕, 雷 然 等. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2022, 42: 358
doi: 10.11902/1005.4537.2021.160
6 Lei R, Shi C J, Li X H. Corrosion inhibition of aluminum in HCl solution by flos sophorae immaturus extract [J] J. Chin. Soc. Corros. Prot., 2022, 42: 939
雷 然, 石成杰, 李向红. 槐米提取物对Al在HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2022, 42: 939
7 Feng L J, Zhang S S, Hao L, et al. Cucumber (Cucumis sativus L.) leaf extract as a green corrosion inhibitor for carbon steel in acidic solution: electrochemical, Functional and Molecular Analysis [J]. Molecules, 2022, 27: 3826
doi: 10.3390/molecules27123826
8 El-Haddad M N. Chitosan as a green inhibitor for copper corrosion in acidic medium [J]. Int. J. Biol. Macromol., 2013, 55: 142
doi: 10.1016/j.ijbiomac.2012.12.044 pmid: 23298849
9 Qiang Y J, Zhang S T, Wang L P, et al. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid [J]. Appl. Surf. Sci., 2019, 492: 228
doi: 10.1016/j.apsusc.2019.06.190
10 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
11 Jiang F W, Zhao W J, Wu Y M, et al. Anti-corrosion behaviors of epoxy composite coatings enhanced via graphene oxide with different aspect ratios [J]. Prog. Org. Coat., 2019, 127: 70
12 Pourhashem S, Vaezi M R, Rashidi A, et al. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel [J]. Corros. Sci., 2017, 115: 78
doi: 10.1016/j.corsci.2016.11.008
13 Ataei S, Khorasani S N, Neisiany R E. Biofriendly vegetable oil healing agents used for developing self-healing coatings: a review [J]. Prog. Org. Coat., 2019, 129: 77
14 Hu X X, Zhang X, Liu J, et al. Development and performance of phosphate-based protective insulation coating for non-oriented electrical steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 805
胡雄鑫, 张 弦, 刘 静 等. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 805
doi: 10.11902/1005.4537.2021.250
15 Zhang C, Wang H R, Zhou Q X. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent [J]. Prog. Org. Coat., 2018, 125: 403
16 Zhang Z Y, Guo Z X, Zhou X, et al. Preparation and performance of epoxy resin coating with benzotriazole inhibitor charged nano-halloysite tubes [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 705
张正阳, 郭子新, 周 欣 等. 纳米埃洛石装载苯并三氮唑自修复涂层研究 [J]. 中国腐蚀与防护学报, 2022, 42: 705
doi: 10.11902/1005.4537.2021.127
17 Yan S K, Song G L, Li Z X, et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments [J]. J. Mater. Sci. Technol., 2018, 34: 421
doi: 10.1016/j.jmst.2017.11.021
18 Ding Y K, Chen G M, Ni Z F, et al. Corrosion resistance of silane film modified by hexagonal boron nitride [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 864
丁玉康, 陈国美, 倪自丰 等. 六方氮化硼改性硅烷膜耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 864
doi: 10.11902/1005.4537.2020.176
19 Mujib S B, Mukherjee S, Ren Z K, et al. Assessing corrosion resistance of two-dimensional nanomaterial-based coatings on stainless steel substrates [J]. Roy. Soc. Open Sci., 2020, 7: 200214
20 Zhai Y. The preparation and modification of Ti particles and its influence on the property of the epoxy coating [D]. Harbin: Harbin Engineering University, 2012
翟 阳. 纳米钛粉制备与改性及其对环氧涂层性能影响 [D]. 哈尔滨: 哈尔滨工程大学, 2012
21 Zhu J J, Zhu M Y, Zhang R H, et al. Corrosion inhibition behavior of electrochemically synthesized carbon dots on Q235 carbon steel [J]. J. Adhes. Sci. Technol., 2023, 37(13): 1997
doi: 10.1080/01694243.2022.2108271
22 Wang T X, Cao S Y, Sun Y Q, et al. Ionic liquid-assisted preparation of N, S-rich carbon dots as efficient corrosion inhibitors [J]. J. Mol. Liq., 2022, 356: 118943
doi: 10.1016/j.molliq.2022.118943
23 Hao J, Li L Y, Zhao W W, et al. Synthesis and application of CCQDs as a novel type of environmentally friendly scale inhibitor [J]. ACS Appl. Mater. Interfaces, 2019, 11: 9277
doi: 10.1021/acsami.8b19015
24 Zhang H D, Chen A Y, Gan B, et al. Corrosion protection investigations of carbon dots and polydopamine composite coating on magnesium alloy [J]. J. Magnes. Alloy., 2022, 10: 1358
doi: 10.1016/j.jma.2020.11.021
25 Li H T, He X D, Kang Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J]. Angew. Chem. Int. Ed., 2010, 49: 4430
doi: 10.1002/anie.200906154 pmid: 20461744
26 Guo X, Wang C F, Yu Z Y, et al. Facile access to versatile fluorescent carbon dots toward light-emitting diodes [J]. Chem. Commun., 2012, 48: 2692
doi: 10.1039/c2cc17769b
27 Dong Y Q, Lin J P, Chen Y M, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals [J]. Nanoscale, 2014, 6: 7410
doi: 10.1039/c4nr01482k pmid: 24875280
28 He M Q, Guo X R, Huang J Z, et al. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation [J]. Carbon, 2018, 140: 508
doi: 10.1016/j.carbon.2018.08.067
29 Kang S, Kim K M, Son Y, et al. Graphene oxide quantum dots derived from coal for bioimaging: facile and green approach [J]. Sci. Rep., 2019, 9: 4101
doi: 10.1038/s41598-018-37479-6 pmid: 30858383
30 Zhang Y T, Li K K, Ren S Z, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(II) detection [J]. ACS Sustain. Chem. Eng., 2019, 7: 9793
doi: 10.1021/acssuschemeng.8b06792
31 Zhou X J, Zhang Y, Wang C, et al. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage [J]. ACS Nano, 2012, 6: 6592
doi: 10.1021/nn301629v pmid: 22813062
32 Zhu H, Wang X L, Li Y L, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties [J]. Chem. Commun., 2009, (34): 5118
33 Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite [J]. Chem. Commun., 2008, (41): 5116
34 Wang J P, Sahu S, Sonkar S K, et al. Versatility with carbon dots-from overcooked BBQ to brightly fluorescent agents and photocatalysts [J]. RSC Adv., 2013, 3: 15604
doi: 10.1039/c3ra42302f
35 Yang S T, Wang X, Wang H F, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents [J]. J. Phys. Chem., 2009, 113C: 18110
36 Xu L Q, Yang W J, Neoh K G, et al. Dopamine-induced reduction and functionalization of graphene oxide nanosheets [J]. Macromolecules, 2010, 43: 8336
doi: 10.1021/ma101526k
37 Zhang Z Q. Study on the preparation and application of carbon nano-dots from Chinese cabbage [D]. Changchun: Jilin University, 2022
张镇乾. 大白菜制备碳纳米点及其应用研究 [D]. 长春: 吉林大学, 2022
38 Zhao H B, Leng T C, Liu X M, et al. Preparation of kiwifruit biomass carbon dots by microwave method and application of Fe3+ detection in honeysuckle [J]. Sci. Technol. Food Ind., 2022, 43(3): 246
赵鸿宾, 冷天翠, 刘晓梦 等. 微波法制备猕猴桃生物质碳点及应用于金银花中Fe3+的检测 [J]. 食品工业科技, 2022, 43(3): 246
39 Liu S H, Liu Z C, Li Q F, et al. Facile synthesis of carbon dots from wheat straw for colorimetric and fluorescent detection of fluoride and cellular imaging [J]. Spectrochim. Acta, 2021, 246A: 118964
40 Hu S L, Wei Z J, Chang Q, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity [J]. Appl. Surf. Sci., 2016, 378: 402
doi: 10.1016/j.apsusc.2016.04.038
41 Kovalchuk A, Huang K W, Xiang C S, et al. Luminescent polymer composite films containing coal-derived graphene quantum dots [J]. ACS Appl. Mater. Interfaces, 2015, 7: 26063
doi: 10.1021/acsami.5b06057
42 Thiyagarajan S K, Raghupathy S, Palanivel D, et al. Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement [J]. Phys. Chem. Chem. Phys., 2016, 18: 12065
doi: 10.1039/c6cp00867d pmid: 27067247
43 Geng B J, Yang D W, Zheng F F, et al. Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging [J]. New J. Chem., 2017, 41: 14444
doi: 10.1039/C7NJ03005C
44 Singamaneni S R, van Tol J, Ye R Q, et al. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots [J]. Appl. Phys. Lett., 2015, 107: 212402
doi: 10.1063/1.4936204
45 Yang L, Wen J X, Li K J, et al. Carbon quantum dots: comprehensively understanding of the internal quenching mechanism and application for catechol detection [J]. Sens. Actuators, 2021, 333B: 129557
46 Wu X W. Synthesis of carbon dots and their applications in biosensing and pollutant detection [D]. Changchun: Jilin University, 2022
母晓玮. 碳点的合成及其在生物传感和污染物检测中的应用 [D]. 长春: 吉林大学, 2022
47 Ma Y, Di H H, Yu Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research [J]. Appl. Surf. Sci., 2016, 360: 936
doi: 10.1016/j.apsusc.2015.11.088
48 Cen H Y, Zhang X, Zhao L, et al. Carbon dots as effective corrosion inhibitor for 5052 aluminium alloy in 0.1 M HCl solution [J]. Corros. Sci., 2019, 161: 108197
doi: 10.1016/j.corsci.2019.108197
49 Wan S, Chen H K, Liao B K, et al. Adsorption and anticorrosion mechanism of glucose-based functionalized carbon dots for copper in neutral solution [J]. J. Taiwan Inst. Chem. Eng., 2021, 129: 289
doi: 10.1016/j.jtice.2021.10.001
50 Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
doi: 10.1016/j.corsci.2019.108193
51 Zhu M Y, Guo L, He Z Y, et al. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: a detailed multidimensional study [J]. J. Colloid Interface Sci., 2022, 608: 2039
doi: 10.1016/j.jcis.2021.10.160
52 Daoud D, Douadi T, Hamani H, et al. Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: experimental and computational study [J]. Corros. Sci., 2015, 94: 21
doi: 10.1016/j.corsci.2015.01.025
53 Wang J, Wang S Y, Zhang C, et al. Effect of nitrogen doping on corrosion inhibition performance of carbon nanoparticles [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 85
王 晶, 王斯琰, 张 崇 等. 氮掺杂对碳纳米颗粒缓蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 85
54 Hmamou D B, Salghi R, Zarrouk A, et al. Weight loss, electrochemical, quantum chemical calculation, and molecular dynamics simulation studies on 2-(benzylthio)-1, 4, 5-triphenyl-1H-imidazole as an inhibitor for carbon steel corrosion in hydrochloric acid [J]. Ind. Eng. Chem. Res., 2013, 52: 14315
doi: 10.1021/ie401034h
55 Khan G, Basirun W J, Kazi S N, et al. Electrochemical investigation on the corrosion inhibition of mild steel by Quinazoline Schiff base compounds in hydrochloric acid solution [J]. J. Colloid Interface Sci., 2017, 502: 134
doi: 10.1016/j.jcis.2017.04.061
56 Cui M J, Ren S M, Xue Q J, et al. Carbon dots as new eco-friendly and effective corrosion inhibitor [J]. J. Alloy. Compd., 2017, 726: 680
doi: 10.1016/j.jallcom.2017.08.027
57 Wei J Y. Study on the corrosion inhibition performance of levodopa derivatives [D]. Shenyang: Shenyang University of Chemical Technology, 2021
魏佳煜. 左旋多巴衍生物缓蚀性能研究 [D]. 沈阳: 沈阳化工大学, 2021
58 Ye Y W, Yang D P, Chen H, et al. A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment [J]. J. Hazard. Mater., 2020, 381: 121019
doi: 10.1016/j.jhazmat.2019.121019
59 Ye Y W, Jiang Z L, Zou Y J, et al. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 43: 144
doi: 10.1016/j.jmst.2020.01.025
60 Zhu M Y, He Z Y, Guo L, et al. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: performance and mechanism investigation [J]. J. Mol. Liq., 2021, 342: 117583
doi: 10.1016/j.molliq.2021.117583
61 Niu F H, Zhou G G, Zhu J W, et al. Inhibition behavior of nitrogen-doped carbon dots on X80 carbon steel in acidic solution [J]. J. Mol. Liq., 2021, 339: 117171
doi: 10.1016/j.molliq.2021.117171
62 Shi Y Y, Niu F H, Zhu J W, et al. Inhibition behavior of nitrogen-doped carbon dots on X80 carbon steel in acidic solution [A]. Proceedings of 2021 8th Materials and Corrosion Protection Conference & 2021 2nd Reinforced Concrete Durability and Facility Service Safety Conference [C]. Guiyang, 2021: 128
史艳艳, 牛翻红, 朱建伟 等. 在酸性溶液中氮掺杂碳点对X80碳钢缓蚀行为的实验研究 [A]. 2021第八届海洋材料与腐蚀防护大会暨2021第二届钢筋混凝土耐久性与设施服役安全大会 [C]. 贵阳, 2021: 128
63 Xiao H, Dong S Y, Yuan X J, et al. Corrosion inhibition performance and mechanism of N-doped carbon dots to Q235 steel [J]. J. Funct. Mater., 2021, 52: 8138
doi: 10.3969/j.issn.1001-9731.2021.08.019
肖 晗, 董社英, 袁小静 等. 氮掺杂碳点对Q235钢的缓蚀性能及机理研究 [J]. 功能材料, 2021, 52: 8138
64 Zhang Y, Zhang S T, Tan B C, et al. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution [J]. J. Colloid Interface Sci., 2021, 604: 1
doi: 10.1016/j.jcis.2021.07.034
65 Cui M J, Qiang Y J, Wang W, et al. Microwave synthesis of eco-friendly nitrogen doped carbon dots for the corrosion inhibition of Q235 carbon steel in 0.1 M HCl [J]. Int. J. Electrochem. Sci., 2021, 16: 151019
doi: 10.20964/2021.01.47
66 Liu Q, Zhou T Y. Inhibition behavior of graphene quantum dots for carbon steel in HCl solution [J]. Corros. Prot., 2015, 36: 152
刘 青, 周桃玉. 盐酸溶液中石墨烯量子点对碳钢的缓蚀性能 [J]. 腐蚀与防护, 2015, 36: 152
67 Wang M. Preparation and corrosion inhibition of graphene oxide quantum dots [D]. Wuhan: Huazhong University of Science & Technology, 2019
王 梦. 氧化石墨烯量子点的制备及缓蚀性能研究 [D]. 武汉: 华中科技大学, 2019
68 Xu Q J, Ge K, Zhang S T, et al. Understanding the adsorption and inhibitive properties of Nitrogen-Doped Carbon Dots for copper in 0.5 M H2SO4 solution [J]. J. Taiwan Inst. Chem. Eng., 2021, 125: 23
doi: 10.1016/j.jtice.2021.05.050
69 Zhou Q Z, Yuan G H, Lin M J, et al. Large-scale electrochemical fabrication of nitrogen-doped carbon quantum dots and their application as corrosion inhibitor for copper [J]. J. Mater. Sci., 2021, 56: 12909
doi: 10.1007/s10853-021-06102-x
70 Lorite I, Romero J J, Fernandez J F. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: experimental evidences [J]. AIP Adv., 2015, 5: 037105
71 Li Y, Liu H, Liu X Q, et al. Free-radical-assisted rapid synthesis of graphene quantum dots and their oxidizability studies [J]. Langmuir, 2016, 32: 8641
doi: 10.1021/acs.langmuir.6b02422 pmid: 27506575
72 Chen J Q, Hou D L, Xiao H, et al. Corrosion inhibition on carbon steel in acidic solution by carbon dots prepared from waste longan shells [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 629
陈佳起, 侯道林, 肖 晗 等. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 629
doi: 10.11902/1005.4537.2021.214
73 Qian J H, Li G P. Status of development of rare earth industry in China [J]. Chin. J. Rare Met., 2003, 27: 813
钱九红, 李国平. 中国稀土产业的发展现状 [J]. 稀有金属, 2003, 27: 813
74 Liu Z X, Hao X Y, Li Y, et al. Novel Ce@N-CDs as green corrosion inhibitor for metal in acidic environment [J]. J. Mol. Liq., 2022, 349: 118155
doi: 10.1016/j.molliq.2021.118155
75 Saraswat V, Yadav M. Carbon dots as green corrosion inhibitor for mild steel in HCl solution [J]. ChemistrySelect, 2020, 5: 7347
doi: 10.1002/slct.v5.25
76 Cui M J, Ren S M, Zhao H C, et al. Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1 M HCl solution [J]. Appl. Surf. Sci., 2018, 443: 145
doi: 10.1016/j.apsusc.2018.02.255
77 Luo J X, Cheng X, Zhong C F, et al. Effect of reaction parameters on the corrosion inhibition behavior of N-doped carbon dots for metal in 1 M HCl solution [J]. J. Mol. Liq., 2021, 338: 116783
doi: 10.1016/j.molliq.2021.116783
78 Ye Y W, Zhang D W, Zou Y J, et al. A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor [J]. J. Cleaner Prod., 2020, 264: 121682
doi: 10.1016/j.jclepro.2020.121682
79 Yang D P, Ye Y W, Su Y, et al. Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel [J]. J. Cleaner Prod., 2019, 229: 180
doi: 10.1016/j.jclepro.2019.05.030
80 Cao S Y, Liu D, Wang T X, et al. Nitrogen-doped carbon dots as high-effective inhibitors for carbon steel in acidic medium [J]. Colloids Surf., 2021, 616A: 126280
81 Liu Z X, Ye Y W, Chen H. Corrosion inhibition behavior and mechanism of N-doped carbon dots for metal in acid environment [J]. J. Cleaner Prod., 2020, 270: 122458
doi: 10.1016/j.jclepro.2020.122458
82 Ye Y W, Zou Y J, Jiang Z L, et al. An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1 M HCl solution [J]. J. Alloy. Compd., 2020, 815: 152338
doi: 10.1016/j.jallcom.2019.152338
83 Cen H Y, Chen Z Y, Guo X P. N, S co-doped carbon dots as effective corrosion inhibitor for carbon steel in CO2-saturated 3.5% NaCl solution [J]. J. Taiwan Inst. Chem. Eng., 2019, 99: 224
doi: 10.1016/j.jtice.2019.02.036
84 Luo J X, Cheng X, Chen X H, et al. The effect of N and S ratios in N, S co-doped carbon dot inhibitor on metal protection in 1 M HCl solution [J]. J. Taiwan Inst. Chem. Eng., 2021, 127: 387
doi: 10.1016/j.jtice.2021.08.023
85 Zhang Y, Tan B C, Zhang X, et al. Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution [J]. J. Mol. Liq., 2021, 338: 116702
doi: 10.1016/j.molliq.2021.116702
86 Liu T T. Systhesis and application of heteroatom doped carbon dots based on Chinese herbal medicines [D]. Xinxiang: Henan Normal University, 2020
刘甜甜. 基于中草药材合成杂原子掺杂碳点及其应用 [D]. 新乡: 河南师范大学, 2020
87 Liang P, Li G X, Wang Z Y, et al. Nitrogen/sulfur co‐doped carbon dots for enhancing anti‐corrosion performance of Mg alloy in NaCl solution [J]. ChemistrySelect, 2021, 6(41): 11337
doi: 10.1002/slct.v6.41
88 Liu J, Wang D P, Gao L X, et al. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution [J]. Appl. Surf. Sci., 2016, 389: 369
doi: 10.1016/j.apsusc.2016.07.107
89 Shi H W, Han E H, Liu F C. Corrosion protection of aluminium alloy 2024-T3 in 0.05 M NaCl by cerium cinnamate [J]. Corros. Sci., 2011, 53: 2374
doi: 10.1016/j.corsci.2011.03.012
90 Abdallah M, Sobhi M, Altass H M. Corrosion inhibition of aluminum in hydrochloric acid by pyrazinamide derivatives [J]. J. Mol. Liq., 2016, 223: 1143
doi: 10.1016/j.molliq.2016.09.006
91 Moattari R M, Rahimi S, Rajabi L, et al. Statistical investigation of lead removal with various functionalized carboxylate ferroxane nanoparticles [J]. J. Hazard. Mater., 2015, 283: 276
doi: 10.1016/j.jhazmat.2014.08.025 pmid: 25285999
92 Shen G X, Chen Y C, Lin L, et al. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals [J]. Electrochim. Acta, 2005, 50: 5083
doi: 10.1016/j.electacta.2005.04.048
93 Zhu C, Fu Y J, Liu C G, et al. Carbon dots as fillers inducing healing/self‐healing and anticorrosion properties in polymers [J]. Adv. Mater., 2017, 29: 1701399
doi: 10.1002/adma.v29.32
94 Du F F. Anti-corrosion performance of novel epoxy composite coatings filled with N-doped carbon nanodots [D]. Qingdao: Qingdao University of Science & Technology, 2022
杜非凡. 新型氮掺杂碳纳米点环氧复合涂层防腐性能研究 [D]. 青岛: 青岛科技大学, 2022
95 Pourhashem S, Ghasemy E, Rashidi A, et al. Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots [J]. J. Alloy. Compd., 2018, 731: 1112
doi: 10.1016/j.jallcom.2017.10.150
96 Pourhashem S, Rashidi A, Vaezi M R. Comparing the corrosion protection performance of graphene nanosheets and graphene quantum dots as nanofiller in epoxy coatings [J]. Ind. Lubr. Tribol., 2019, 71: 653
doi: 10.1108/ILT-05-2018-0186
97 Ramezanzadeh B, Karimi B, Ramezanzadeh M, et al. Synthesis and characterization of polyaniline tailored graphene oxide quantum dot as an advance and highly crystalline carbon-based luminescent nanomaterial for fabrication of an effective anti-corrosion epoxy system on mild steel [J]. J. Taiwan Inst. Chem. Eng., 2019, 95: 369
doi: 10.1016/j.jtice.2018.07.041
98 Ren S M, Cui M J, Zhao H C, et al. Effect of nitrogen-doped carbon dots on the anticorrosion properties of waterborne epoxy coatings [J]. Surf. Topogr.: Metrol. Prop., 2018, 6: 024003
99 Wang J, Du P, Zhao H C, et al. Novel nitrogen doped carbon dots enhancing the anticorrosive performance of waterborne epoxy coatings [J]. Nanoscale Adv., 2019, 1: 3443
doi: 10.1039/c9na00155g pmid: 36133544
100 Wan S, Chen H K, Cai G Y, et al. Functionalization of h-BN by the exfoliation and modification of carbon dots for enhancing corrosion resistance of waterborne epoxy coating [J]. Prog. Org. Coat., 2022, 165: 106757
[1] Shuyuan LIANG, Cuiyu JIANG. Corrosion Mechanism of Oil-fired Boiler in Power Plant and Progresses in Anticorrosion Techniques Inside Boiler[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[2] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[3] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[4] Mingjun CUI,Siming REN,Guang'an ZHANG,Shuan LIU,Haichao ZHAO,Liping WANG,Qunji XUE. Corrosion Performance of Hexagonal Boron Nitride Doped Waterborne Epoxy Coating[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[5] Xiaobao LI,Li XU,Yihong LIU,Ting LIAO,Mingtian LI,Xuejun CUI. Preparation and Corrosion Properties of Polyaniline Doped with Copper Phthalocyanine Disulfonic Acid[J]. 中国腐蚀与防护学报, 2016, 36(4): 306-312.
[6] YIN Chengyong, LI Cheng, PENG Xiaoyan, WANG Jiayu, WANG Yanhui, ZHENG Shunli, LI Min, HU Wei. Performance of Superhydrophobic Nano Complex Anti-corrosion Coating Fabricated by Sol-gel Technique[J]. 中国腐蚀与防护学报, 2014, 34(3): 257-264.
[7] LI Xijuan,LI Cheng,WANG Jiayu,ZHANG Xuede,YIN Chengyong,ZHENG Shunli,XU Yunling. Preparation and Performence of Composite Copper Coating with Hydrophobic Liquid Microcapsule[J]. 中国腐蚀与防护学报, 2013, 33(4): 311-316.
[8] HAO Yongsheng, LIU Fuchun, SHI Hongwei, HAN EnHou. ANTICORROSION PROPERTIES OF EPOXY/GLASS FIBER COATINGS[J]. 中国腐蚀与防护学报, 2011, 31(6): 426-430.
[11] . A review for study on corrosion and protection methods for aluminum matrix composites[J]. 中国腐蚀与防护学报, 2008, 28(1): 59-64 .
[12] . Molecular Dynamics Simulation of Interaction between Cuprous Oxide Crystal and Benzotriazole Derivatives[J]. 中国腐蚀与防护学报, 2007, 27(6): 348-353 .
[13] . Effect of schiff bases’ structure on corrosion inhibition efficiency of copper[J]. 中国腐蚀与防护学报, 2007, 27(3): 156-161 .
[15] Pengfei Wu; Moucheng Li; Jianian Shen; Meiqun Xiao; Dong Liu. PHOTO- ELECTROCHEMICAL ANTICORROSION EFFECT OF ANODIC TiO2 FILMS[J]. 中国腐蚀与防护学报, 2005, 25(1): 53-56 .
No Suggested Reading articles found!