Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1367-1374    DOI: 10.11902/1005.4537.2022.365
Current Issue | Archive | Adv Search |
Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution
LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun(), LI Yizhou()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1367-1374.

Download:  HTML  PDF(8660KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of NaNO3 and TU on the crevice corrosion of 7075 Al-alloy were investigated by mass loss measurements, electrochemical tests and scanning electron microscopy (SEM) in acidic sodium chloride solution. NaNO3 and TU show a certain inhibited effect on the corrosion of Al-alloy, respectively. Moreover, NaNO3 and TU could inhibit synergistically the corrosion of aluminum alloy. For the specimen with crevice, NaNO3 could inhibit the corrosion of specimen outside crevice. However, it could promote the corrosion of specimen inside crevice. It could be attributed to that the produced NH3 inside crevice due to the reduction of nitrate could selectively dissolve the intermetallic particles and induce the nucleation of pitting corrosion inside crevice. In the solution containing TU, the specimen inside crevice is hardly corroded, however, the specimen outside crevice is still seriously corroded. In the solution with NaNO3 and TU, the TU could adsorb on metal surface and inhibit the pitting corrosion inside crevice, while the NaNO3 could promote the formation passive film and inhibit the corrosion of specimen outside crevice.

Key words:  Al-alloy      corrosion inhibitor      crevice corrosion      synergistic effect     
Received:  21 November 2022      32134.14.1005.4537.2022.365
ZTFLH:  TG172  
Fund: National Natural Science of Foundation of China(51901217)
Corresponding Authors:  LI Yizhou, E-mail: liyizhou@ouc.edu.cn;
PANG Kun, E-mail: pangkun@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.365     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1367

Fig.1  The device diagram of crevice structure
Fig.2  Polarization curves of 7075 Al-alloy in pH=1 solution containing 1% NaCl with different corrosion inhibitors
Fig.3  Nyquist plots (a) of 7075 Al-alloy in different solutions and corresponding equivalent circuit of blank, 1% NaNO3 and 0.02% TU (b) and 1% NaNO3+0.02% TU (c)
Inhibitor

Rs

Ω·cm2

Y0(Qdl)

Ω-1·cm-2·s n

n

Rct

Ω·cm2

Y0(Qf)

Ω-1·cm-2·s n

n

Rf

Ω·cm2

Rl

Ω·cm2

L
Blank6.9764×10-40.772.29---2.470.21
NaNO36.951.21×10-40.89188.9---123.8358
TU8.951.0×10-40.9676.22--43.5822.23
NaNO3 +TU8.977.51×10-50.93438.161.5*10-30.9729380.3925.88
Table 1  Electrochemical impedance fitting parameters of 7075 Al-alloy in different solutions
InhibitorVcorr / g·m-2·h-1η / %
Blank27.085-
NaNO32.91589.24
TU6.0477.7
NaNO3 + TU0.62597.69
Table 2  Mass loss results of 7075 Al-alloy after 24 h immersion in different solutions
Fig.4  Macroscopic morphology, 3D profile and microscopic morphology of 7075 Al-alloy immersed in blank (a), 1% NaNO3(b), 0.02% TU (c) and 1% NaNO3+0.02% TU (d) solutions for 24 h
Fig.5  Curves of potential change inside and outside the crevice of 7075 Al-alloy immersed in blank (a), 1% NaNO3 (b), 0.02% TU (c) and 1% NaNO3+0.02% TU (d) solutions for 24 h
Fig.6  Macro (a1-d1) and inside crevice (a2-d2) and outside crevice (a3-d3) micro morphology of 7075 Al-alloy inside and outside crevice after 24 h immersion in different solutions: (a) blank, (b) 0.02% TU, (c) 1% NaNO3, (d) 1% NaNO3+0.02% TU
Fig.7  Mechanism of crevice corrosion of 7075 Al- alloy in blank (a), NaNO3 (b) and NaNO3+0.02% TU (c) solutions
1 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
2 Allachi H, Chaouket F, Draoui K. Protection against corrosion in marine environments of AA6060 aluminium alloy by cerium chlorides [J]. J. Alloy. Compd., 2010, 491: 223
doi: 10.1016/j.jallcom.2009.11.042
3 Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J]. Corros. Sci., 2006, 48: 4202
doi: 10.1016/j.corsci.2006.02.007
4 Rodič P, Milošev I. The influence of additional salts on corrosion inhibition by cerium(III) acetate in the protection of AA7075-T6 in chloride solution [J]. Corros. Sci., 2019, 149: 108
doi: 10.1016/j.corsci.2018.10.021
5 Hill J A, Markley T, Forsyth M, et al. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate [J]. J. Alloy. Compd., 2011, 509: 1683
doi: 10.1016/j.jallcom.2010.09.151
6 Jin Z L, Cai C R, Hashimoto T, et al. The behaviour of iron-containing intermetallic particles in aluminium alloys in alkaline solution [J]. Corros. Sci., 2021, 179: 109134
doi: 10.1016/j.corsci.2020.109134
7 Li Y Z, Xu N, Guo X P, et al. Inhibition effect of imidazoline inhibitor on the crevice corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid [J]. Corros. Sci., 2017, 126: 127
doi: 10.1016/j.corsci.2017.06.021
8 Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
9 Liu C D, Wu M, Zhao Z H, et al. Study on the inhibition effect of chromate on stress corrosion of 2024 aluminum alloy in NaCl solution [J]. Nonferrous Met. Eng., 2018, 8(1): 61
刘畅达, 吴 明, 赵志浩 等. 铬酸盐对2024铝合金在NaCl溶液中缓蚀机制的影响 [J]. 有色金属工程, 2018, 8(1): 61
10 Liu X H, Li Y Z, Lei L, et al. The effect of nitrate on the corrosion behavior of 7075-T651 aluminum alloy in the acidic NaCl solution [J]. Mater. Corros., 2021, 72: 1478
11 Na K H, Pyun S I. Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminium in HCl-based solution [J]. Corros. Sci., 2007, 49: 2663
doi: 10.1016/j.corsci.2006.12.012
12 Li X H, Deng S D, Xie X G. Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution [J]. Corros. Sci., 2014, 81: 162
doi: 10.1016/j.corsci.2013.12.021
13 Lai X, Hu J F, Ruan T, et al. Chitosan derivative corrosion inhibitor for aluminum alloy in sodium chloride solution: A green organic/inorganic hybrid [J]. Carbohydr. Polym., 2021, 265: 118074
doi: 10.1016/j.carbpol.2021.118074
14 Du Y T, Wang H L, Chen Y R, et al. Synthesis of baicalin derivatives as eco-friendly green corrosion inhibitors for aluminum in hydrochloric acid solution [J]. J. Environ. Chem. Eng., 2017, 5: 5891
doi: 10.1016/j.jece.2017.11.004
15 Xu X T, Xu H W, Li W, et al. A combined quantum chemical, molcular dynamics and Monto Carlo study of three amino acids as corroison inhibitors for aluminum in NaCl solution [J]. J. Mol. Liq., 2022, 345: 117010
doi: 10.1016/j.molliq.2021.117010
16 Liu J, Wang D P, Gao L X, et al. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt. % NaCl solution [J]. Appl. Surf. Sci., 2016, 389: 369
doi: 10.1016/j.apsusc.2016.07.107
17 Blanc C, Gastaud S, Mankowski G. Mechanistic studies of the corrosion of 2024 aluminum alloy in nitrate solutions [J]. J. Electrochem. Soc., 2003, 150(8): B396
doi: 10.1149/1.1590327
18 Bai Y L, Shen G L, Qin Q Y. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 Pipeline Steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护报, 2021, 41: 60
19 Moghadam Z, Shabani-Nooshabadi M, Behpour M. Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries [J]. J. Mol. Liq., 2017, 242: 971
doi: 10.1016/j.molliq.2017.07.119
20 Cui Z Y, Li X G, Man C, et al. Corrosion behavior of field-exposed 7A04 aluminum alloy in the Xisha tropical marine atmosphere [J]. J. Mater. Eng. Perform., 2015, 24: 2885
doi: 10.1007/s11665-015-1571-5
21 Li S Y, Church B C. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution [J]. Appl. Surf. Sci., 2018, 440: 861
doi: 10.1016/j.apsusc.2018.01.108
22 McIntyre J F, Dow T S. Intergranular corrosion behavior of aluminum alloys exposed to artificial seawater in the presence of nitrate anion [J]. Corrosion, 1992, 48: 309
doi: 10.5006/1.3315937
[1] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[5] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[6] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[7] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[8] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[9] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[10] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[11] PENG Wenshan, DUAN Tigang, MA Li, XIN Yonglei, CHENG Wenhua, LIU Shaotong. Corrosion Behavior of ZAlSi7Mg Al-alloy in Deep-sea Environments in Western Pacific Ocean and South China Sea[J]. 中国腐蚀与防护学报, 2023, 43(3): 516-524.
[12] ZHOU Kun, LIU Xinhua, LIU Shuai. Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[13] HUANG Miao, WANG Lizi, MA Xiaoqing, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Nd(NO3)3 on Aluminum in HCl Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[14] DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun. Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.
[15] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
No Suggested Reading articles found!