Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 815-822    DOI: 10.11902/1005.4537.2023.210
Current Issue | Archive | Adv Search |
Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating
CEN Yuanyao1, LIAO Guangmeng1, ZHU Yuqin1,2, ZHAO Fangchao1,2, LIU Cong1,2(), HE Jianxin1,2, ZHOU Kun1,2
1. Environmental Effects and Protection of Chongqing Key Laboratory, Equipment Environmental engineering Research Center, Southwest Institute of Technology and Engineering, Chongqing 400050, China
2. National Defense Science and Technology Industry Natural Environment Test and Research Center, Chongqing 400050, China
Cite this article: 

CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 815-822.

Download:  HTML  PDF(3505KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to understand and monitor the process of stress corrosion crack propagation of engineering equipment in service, the study focuses on the propagation of stress corrosion cracks of a designed double cantilever specimen of high-strength Al-alloy with prefabricated crack. Firstly, the mechanism of stress corrosion crack propagation was described, and the linear relationship of the crack length with the variation of the strain in the x- and y-directions of the stress corrosion crack propagation tip was determined through Matlab simulation; The stress concentration area at the crack tip was further determined by Abaqus finite element simulation, afterwards, the distance between the position of optical fiber sensing probe and the crack tip was selected to be 10 and 15 mm respectively; The relevant sensing technology of stress corrosion crack propagation in fiber Bragg gratings was also studied, and then a grating temperature compensation model was proposed; Finally, the correlation between the crack length and the wavelength change of the fiber Bragg grating sensor during corrosion crack propagation was calibrated. The results showed that the correlation of the crack length and the wavelength change was R2 =0.9893 and R2 = 0.9870, respectively; Afterwards, an outdoor exposure test set was constructed in Wanning of Hainan Province, to achieve in-situ monitoring of stress corrosion crack propagation of Al-alloys through networking. The monitoring data showed that after adopting the suitable temperature compensation, the measurement error is only 2.61% for sensor positioned 10 mm near the crack tip, and the monitoring results can provide data support for the real operation of engineering equipment.

Key words:  fiber Bragg grating      stress corrosion      crack propagation      crack monitoring     
Received:  03 July 2023      32134.14.1005.4537.2023.210
ZTFLH:  TP212  
Fund: Basic Research on National Defense Technology(JSJT2022209××××);Enterprise Youth Talent Innovation and Creativity Support Project(QH202308)
Corresponding Authors:  LIU Cong, E-mail: 907125812@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.210     OR     https://www.jcscp.org/EN/Y2024/V44/I3/815

Fig.1  Schematic diagram of stress corrosion crack propagation process
Fig.2  Corrosion crack propagation coordinate system
Fig.3  Relatioship between the growth of corrosion cracks and strain at r point near the vertical crack tip of DCB specimens
Fig.4  Principle of fiber Bragg grating sensing
Fig.5  Stress field at the crack tip of DCB specimen
Fig.6  ayout of fiber Bragg grating for DCB sample
Fig.7  FBG temperature sensor calibration model
Order number

Crack length

mm

Wavelength offset of fiber grating No.1

nm

Wavelength offset of fiber grating No.2

nm

1000
21.212.06431.0704
31.472.22421.3701
41.773.57361.8384
52.214.72512.4091
62.465.02762.6031
Table 1  FBG sensor calibration data
Fig8  FBG sensor calibration model No.1 (a) and No.2(b)
Fig.9  Data before and after fiber grating temperature compensation
Fig.10  Comparison between model and measured data
1 Liu J A, Xie S S. Application and Development of Aluminum Alloys [M]. Beijing: Metallurgical Industry Press, 2004: 20
刘静安, 谢水生. 铝合金材料的应用与技术开发 [M]. 北京: 冶金工业出版社, 2004: 20
2 Wang B J, Luan J Y, Wang S D, et al. Research progress on stress corrosion cracking behavior of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 89
王保杰, 栾吉瑜, 王士栋 等. 镁合金应力腐蚀开裂行为研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 89
doi: 10.11902/1005.4537.2018.186
3 Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
4 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
5 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
6 Liu D, Liu J, Huang F, et al. Corrosion fatigue crack propagation performance of DH36 steel in simulated service conditions for offshore engineering structures [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 959
刘 冬, 刘 静, 黄 峰 等. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 959
7 Zhu R L, Zhang L T, Wang J Q, et al. Stress corrosion crack propagation behavior of elbow pipe of nuclear grade 316LN stainless steel in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 54
朱若林, 张利涛, 王俭秋 等. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为 [J]. 中国腐蚀与防护学报, 2018, 38: 54
doi: 10.11902/1005.4537.2017.006
8 Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 223
张 震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
9 Jiang L, Zhang X Z, Wang J, et al. Real-time online detection of cutter wear based on fiber Bragg grating array [J]. Acta Opt. Sin., 2019, 39: 1206003
doi: 10.3788/AOS
蒋 磊, 张学智, 王 进 等. 基于光纤布拉格光栅阵列的刀头磨损实时在线检测 [J]. 光学学报, 2019, 39: 1206003
10 Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions [J]. Sensors, 2014, 14: 7394
doi: 10.3390/s140407394 pmid: 24763215
11 Sahota J K, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review [J]. Opt. Eng., 2020, 59: 060901
12 Quan Z Q, Fang X Q, Xue G Z, et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor [J]. Chin. J. Lasers, 2020, 47: 0104004
权志桥, 方新秋, 薛广哲 等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究 [J]. 中国激光, 2020, 47: 0104004
13 Güemes A, Fernández-López A, Díaz-Maroto P F, et al. Structural health monitoring in composite structures by fiber-optic sensors [J]. Sensors, 2018, 18: 1094
doi: 10.3390/s18041094
14 Sun L Y, Liu C C, Jiang M S, et al. Fatigue crack prediction method for aluminum alloy based on fiber Bragg grating array [J]. Chin. J. Lasers, 2021, 48: 1306003
doi: 10.3788/CJL
孙玲玉, 刘长超, 姜明顺 等. 基于光纤布拉格光栅阵列的铝合金疲劳裂纹预测方法 [J]. 中国激光, 2021, 48: 1306003
15 Okabe T, Yashiro S. Damage detection in holed composite laminates using an embedded FBG sensor [J]. Compos. Part A: Appl. Sci. Manuf., 2012, 43: 388
doi: 10.1016/j.compositesa.2011.12.009
16 Yashiro S, Okabe T. Estimation of fatigue damage in holed composite laminates using an embedded FBG sensor [J]. Compos. Part A: Appl. Sci. Manuf., 2011, 42: 1962
doi: 10.1016/j.compositesa.2011.08.021
17 Minakuchi S, Takeda N. Recent advancement in optical fiber sensing for aerospace composite structures [J]. Photonic Sens., 2013, 3: 345
doi: 10.1007/s13320-013-0133-4
18 He J J, Yang J S, Wang Y X, et al. Probabilistic model updating for sizing of hole-edge crack using fiber Bragg grating sensors and the high-order extended finite element method [J]. Sensors, 2016, 16(11): 1956
doi: 10.3390/s16111956
19 Chang Q, Yang W X, Zhao H, et al. A multi-sensor based crack propagation monitoring research [J]. Acta Aeronaut. Astronaut. Sin., 2020, 41: 223336
常 琦, 杨维希, 赵 恒 等. 基于多传感器的裂纹扩展监测研究 [J]. 航空学报, 2020, 41: 223336
20 Jia X, Hu X T, Song Y D. Calculation formula for stress intensity factors of CT specimens based on three dimensional finite element solutions [J]. Mater. Mech. Eng., 2015, 39(12): 30
贾 旭, 胡绪腾, 宋迎东. 基于三维有限元解的紧凑拉伸试样应力强度因子计算公式 [J]. 机械工程材料, 2015, 39(12): 30
21 Zhu L J. Research on sensing and mechanical properties of embedded optical fiber smart composite materials [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 32
朱路佳. 埋入式光纤智能复合材料传感与力学性能研究 [D]. 南京: 南京航空航天大学, 2018: 32
22 Li H, Zhu L Q, Liu F, et al. Strain transfer analysis and experimental research of surface-bonded bare FBG [J]. Chin. J. Sci. Instrum., 2014, 35: 1744
李 红, 祝连庆, 刘 锋 等. 裸光纤光栅表贴结构应变传递分析与实验研究 [J]. 仪器仪表学报, 2014, 35: 1744
23 Wu Z H. Simulation study on crack propagation in the panel based on Abaqus [D]. Changsha: Central South University, 2013: 25
吴中怀. 基于Abaqus的薄壁板裂纹扩展仿真研究 [D]. 长沙: 中南大学, 2013: 25
[1] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[3] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[4] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[5] LI Wenju, ZHANG Huixia, ZHANG Hongquan, HAO Fuyao, TONG Hongtao. Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[6] LI Kexuan, SONG Longfei, LI Xiaorong. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[7] LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[8] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[9] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[10] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[11] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[12] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
No Suggested Reading articles found!