|
|
Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating |
CEN Yuanyao1, LIAO Guangmeng1, ZHU Yuqin1,2, ZHAO Fangchao1,2, LIU Cong1,2( ), HE Jianxin1,2, ZHOU Kun1,2 |
1. Environmental Effects and Protection of Chongqing Key Laboratory, Equipment Environmental engineering Research Center, Southwest Institute of Technology and Engineering, Chongqing 400050, China 2. National Defense Science and Technology Industry Natural Environment Test and Research Center, Chongqing 400050, China |
|
Cite this article:
CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 815-822.
|
Abstract In order to understand and monitor the process of stress corrosion crack propagation of engineering equipment in service, the study focuses on the propagation of stress corrosion cracks of a designed double cantilever specimen of high-strength Al-alloy with prefabricated crack. Firstly, the mechanism of stress corrosion crack propagation was described, and the linear relationship of the crack length with the variation of the strain in the x- and y-directions of the stress corrosion crack propagation tip was determined through Matlab simulation; The stress concentration area at the crack tip was further determined by Abaqus finite element simulation, afterwards, the distance between the position of optical fiber sensing probe and the crack tip was selected to be 10 and 15 mm respectively; The relevant sensing technology of stress corrosion crack propagation in fiber Bragg gratings was also studied, and then a grating temperature compensation model was proposed; Finally, the correlation between the crack length and the wavelength change of the fiber Bragg grating sensor during corrosion crack propagation was calibrated. The results showed that the correlation of the crack length and the wavelength change was R2 =0.9893 and R2 = 0.9870, respectively; Afterwards, an outdoor exposure test set was constructed in Wanning of Hainan Province, to achieve in-situ monitoring of stress corrosion crack propagation of Al-alloys through networking. The monitoring data showed that after adopting the suitable temperature compensation, the measurement error is only 2.61% for sensor positioned 10 mm near the crack tip, and the monitoring results can provide data support for the real operation of engineering equipment.
|
Received: 03 July 2023
32134.14.1005.4537.2023.210
|
|
Fund: Basic Research on National Defense Technology(JSJT2022209××××);Enterprise Youth Talent Innovation and Creativity Support Project(QH202308) |
Corresponding Authors:
LIU Cong, E-mail: 907125812@qq.com
|
1 |
Liu J A, Xie S S. Application and Development of Aluminum Alloys [M]. Beijing: Metallurgical Industry Press, 2004: 20
|
|
刘静安, 谢水生. 铝合金材料的应用与技术开发 [M]. 北京: 冶金工业出版社, 2004: 20
|
2 |
Wang B J, Luan J Y, Wang S D, et al. Research progress on stress corrosion cracking behavior of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 89
|
|
王保杰, 栾吉瑜, 王士栋 等. 镁合金应力腐蚀开裂行为研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 89
doi: 10.11902/1005.4537.2018.186
|
3 |
Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
|
|
李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
|
4 |
Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
|
|
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
|
5 |
Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
|
|
焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
|
6 |
Liu D, Liu J, Huang F, et al. Corrosion fatigue crack propagation performance of DH36 steel in simulated service conditions for offshore engineering structures [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 959
|
|
刘 冬, 刘 静, 黄 峰 等. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 959
|
7 |
Zhu R L, Zhang L T, Wang J Q, et al. Stress corrosion crack propagation behavior of elbow pipe of nuclear grade 316LN stainless steel in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 54
|
|
朱若林, 张利涛, 王俭秋 等. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为 [J]. 中国腐蚀与防护学报, 2018, 38: 54
doi: 10.11902/1005.4537.2017.006
|
8 |
Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 223
|
|
张 震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
|
9 |
Jiang L, Zhang X Z, Wang J, et al. Real-time online detection of cutter wear based on fiber Bragg grating array [J]. Acta Opt. Sin., 2019, 39: 1206003
doi: 10.3788/AOS
|
|
蒋 磊, 张学智, 王 进 等. 基于光纤布拉格光栅阵列的刀头磨损实时在线检测 [J]. 光学学报, 2019, 39: 1206003
|
10 |
Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions [J]. Sensors, 2014, 14: 7394
doi: 10.3390/s140407394
pmid: 24763215
|
11 |
Sahota J K, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review [J]. Opt. Eng., 2020, 59: 060901
|
12 |
Quan Z Q, Fang X Q, Xue G Z, et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor [J]. Chin. J. Lasers, 2020, 47: 0104004
|
|
权志桥, 方新秋, 薛广哲 等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究 [J]. 中国激光, 2020, 47: 0104004
|
13 |
Güemes A, Fernández-López A, Díaz-Maroto P F, et al. Structural health monitoring in composite structures by fiber-optic sensors [J]. Sensors, 2018, 18: 1094
doi: 10.3390/s18041094
|
14 |
Sun L Y, Liu C C, Jiang M S, et al. Fatigue crack prediction method for aluminum alloy based on fiber Bragg grating array [J]. Chin. J. Lasers, 2021, 48: 1306003
doi: 10.3788/CJL
|
|
孙玲玉, 刘长超, 姜明顺 等. 基于光纤布拉格光栅阵列的铝合金疲劳裂纹预测方法 [J]. 中国激光, 2021, 48: 1306003
|
15 |
Okabe T, Yashiro S. Damage detection in holed composite laminates using an embedded FBG sensor [J]. Compos. Part A: Appl. Sci. Manuf., 2012, 43: 388
doi: 10.1016/j.compositesa.2011.12.009
|
16 |
Yashiro S, Okabe T. Estimation of fatigue damage in holed composite laminates using an embedded FBG sensor [J]. Compos. Part A: Appl. Sci. Manuf., 2011, 42: 1962
doi: 10.1016/j.compositesa.2011.08.021
|
17 |
Minakuchi S, Takeda N. Recent advancement in optical fiber sensing for aerospace composite structures [J]. Photonic Sens., 2013, 3: 345
doi: 10.1007/s13320-013-0133-4
|
18 |
He J J, Yang J S, Wang Y X, et al. Probabilistic model updating for sizing of hole-edge crack using fiber Bragg grating sensors and the high-order extended finite element method [J]. Sensors, 2016, 16(11): 1956
doi: 10.3390/s16111956
|
19 |
Chang Q, Yang W X, Zhao H, et al. A multi-sensor based crack propagation monitoring research [J]. Acta Aeronaut. Astronaut. Sin., 2020, 41: 223336
|
|
常 琦, 杨维希, 赵 恒 等. 基于多传感器的裂纹扩展监测研究 [J]. 航空学报, 2020, 41: 223336
|
20 |
Jia X, Hu X T, Song Y D. Calculation formula for stress intensity factors of CT specimens based on three dimensional finite element solutions [J]. Mater. Mech. Eng., 2015, 39(12): 30
|
|
贾 旭, 胡绪腾, 宋迎东. 基于三维有限元解的紧凑拉伸试样应力强度因子计算公式 [J]. 机械工程材料, 2015, 39(12): 30
|
21 |
Zhu L J. Research on sensing and mechanical properties of embedded optical fiber smart composite materials [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 32
|
|
朱路佳. 埋入式光纤智能复合材料传感与力学性能研究 [D]. 南京: 南京航空航天大学, 2018: 32
|
22 |
Li H, Zhu L Q, Liu F, et al. Strain transfer analysis and experimental research of surface-bonded bare FBG [J]. Chin. J. Sci. Instrum., 2014, 35: 1744
|
|
李 红, 祝连庆, 刘 锋 等. 裸光纤光栅表贴结构应变传递分析与实验研究 [J]. 仪器仪表学报, 2014, 35: 1744
|
23 |
Wu Z H. Simulation study on crack propagation in the panel based on Abaqus [D]. Changsha: Central South University, 2013: 25
|
|
吴中怀. 基于Abaqus的薄壁板裂纹扩展仿真研究 [D]. 长沙: 中南大学, 2013: 25
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|