|
|
Research Progress of Analytical Methods for Vapor Phase Inhibitors |
WANG Quanrun1,2, HOU Jin2, HOU Baorong1, TIAN Huiwen1( ) |
1.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, IOCAS, Institute of oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China |
|
Cite this article:
WANG Quanrun, HOU Jin, HOU Baorong, TIAN Huiwen. Research Progress of Analytical Methods for Vapor Phase Inhibitors. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1189-1202.
|
Abstract As one of the main means to inhibit atmospheric corrosion of metal, vapor phase inhibitor is more and more widely used because of its excellent corrosion preventive effect, higher cost performance and easy to use. The development of analytical methods for vapor phase inhibitors has important guiding significance for the mechanism research and development of new vapor phase inhibitors. This paper introduces the classification of two kinds of vapor phase inhibitor, and describes the characteristics, such as volatility, solubility, adsorption and corrosion inhibition of vapor phase inhibitor. In order to test the different properties of vapor phase inhibitors, several analytical methods were introduced. The volatility test is measured in terms of saturated vapor pressure. Due to the advantages of simple operation and intuitive results, mass loss analysis is widely used in the detection of vapor phase inhibitors and to verify the accuracy of other methods. Electrochemical measurements can reveal a lot of features related to the action of vapor phase corrosion inhibitors, has become the mainstream method. Surface morphological techniques can further explore the film forming mechanism of corrosion inhibitor on metal surface. In sum, the current analysis methods of vapor phase inhibitors are summarized, and the future development trend of vapor phase inhibitor analysis methods is prospected.
|
Received: 10 December 2022
32134.14.1005.4537.2022.393
|
|
Fund: Key Research and Development Program in Shandong Province(2021SFGC0701);Yantai Science and Technology (Industry) Innovation Leading Talent Project(2021RC015) |
Corresponding Authors:
TIAN Huiwen, E-mail: tianhuiwen@qdio.ac.cn
|
1 |
Yu G J, Tang B. Electrochemical methods of inhibitor research [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 76
|
|
余国骏, 汤 兵. 缓蚀剂研究中的电化学方法 [J]. 中国腐蚀与防护学报, 2009, 29: 76
|
2 |
Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
doi: 10.1016/j.pmatsci.2017.04.011
|
3 |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
|
4 |
Zhang D Q. Discussion on environmental and safety factors of vapor rustproof technology and its application prospect [J]. Corros. Prot., 2020, 41(7): 11
|
|
张大全. 气相防锈技术的环境安全因素探讨及其应用展望 [J]. 腐蚀与防护, 2020, 41(7): 11
|
5 |
Gangopadhyay S, Mahanwar P A. Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review [J]. J. Coat. Technol. Res., 2018, 15: 789
doi: 10.1007/s11998-017-0015-6
|
6 |
Cao S Y, Liu D, Ding H, et al. Task-specific ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: An experimental and theoretical study [J]. Corros. Sci., 2019, 153: 301
doi: 10.1016/j.corsci.2019.03.035
|
7 |
Reinhard G, Ludwig U, Hahn G. Vapor phase corrosion inhibitors and method for their production [P]. U.S. Pat. : 7824482, 2010
|
8 |
Venkatalaxmi A, Padmavathi B S, Amaranath T. A general solution of unsteady Stokes equations [J]. Fluid Dyn. Res., 2004, 35: 229
doi: 10.1016/j.fluiddyn.2004.06.001
|
9 |
Guo Y Y, Xu B, Liu Y, et al. Corrosion inhibition properties of two imidazolium ionic liquids with hydrophilic tetrafluoroborate and hydrophobic hexafluorophosphate anions in acid medium [J]. J. Ind. Eng. Chem., 2017, 56: 234
doi: 10.1016/j.jiec.2017.07.016
|
10 |
Han X C, Lin D Y, Zhang J W. Anticorrosion performance of volatile corrosion inhibitor mixture for different metals [J]. Mater. Prot., 2019, 52(1): 40
|
|
韩兴存, 林德雨, 张金伟. 复配气相缓蚀剂对多种金属大气腐蚀的综合保护作用研究 [J]. 材料保护, 2019, 52(1): 40
|
11 |
Teixeira D A, Valente Jr M A G, Benedetti A V, et al. Experimental and theoretical studies of volatile corrosion inhibitors adsorption on zinc electrode [J]. J. Braz. Chem. Soc., 2015, 26: 434
|
12 |
Lyublinski E, Lynch P, Roytman I, et al. Application experience and new approaches for volatile corrosion inhibitors [J]. Int. J. Corros. Scale Inhib., 2015, 4: 176
doi: 10.17675/2305-6894
|
13 |
Bastidas D M, Cano E, Mora E M. Volatile corrosion inhibitors: a review [J]. Anti-Corros. Methods Mater., 2005, 52: 71
doi: 10.1108/00035590510584771
|
14 |
Ansari F A, Verma C, Siddiqui Y S, et al. Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: a review [J]. Int. J. Corros. Scale Inhib., 2018, 7: 126
|
15 |
Ju Y L, Li Y. Research progress of vapor phase inhibitors [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 27
|
|
鞠玉琳, 李 焰. 气相缓蚀剂的研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 27
doi: 10.11902/1005.4537.2013.071
|
16 |
Vashisht H, Bahadur I, Kumar S, et al. Synergistic interactions between tetra butyl phosphonium hydroxide and iodide ions on the mild steel surface for corrosion inhibition in acidic medium [J]. J. Mol. Liq., 2016, 224: 19
doi: 10.1016/j.molliq.2016.09.056
|
17 |
Quartarone G, Bonaldo L, Tortato C. Inhibitive action of indole-5-carboxylic acid towards corrosion of mild steel in deaerated 0.5 M sulfuric acid solutions [J]. Appl. Surf. Sci., 2006, 252: 8251
doi: 10.1016/j.apsusc.2005.10.051
|
18 |
Khaled K F. Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles [J]. Electrochim. Acta, 2008, 53: 3484
doi: 10.1016/j.electacta.2007.12.030
|
19 |
Li X H, Xu X, Lei R, et al. Synergistic inhibition effect of walnut green husk extract complex inhibitors on steel in phosphoric acid [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 358
|
|
李向红, 徐 昕, 雷然 等. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2022, 42: 358
doi: 10.11902/1005.4537.2021.160
|
20 |
Chen W, Huang D X, Wei F. Inhibition effect of brainea insignis extract against carbon steel corrosion in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376
|
|
陈 文, 黄德兴, 韦 奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 376
|
21 |
Chen J Q, Hou D L, Xiao H, et al. Corrosion inhibition on carbon steel in acidic solution by carbon dots prepared from waste longan shells [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 629
|
|
陈佳起, 侯道林, 肖 晗 等. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 629
doi: 10.11902/1005.4537.2021.214
|
22 |
Teng F, Hu G. Research progress of vapor phase inhibitors [J]. Corros. Sci. Prot. Technol., 2014, 26: 360
|
|
滕 飞, 胡 钢. 气相缓蚀剂的研究进展 [J]. 腐蚀科学与防护技术, 2014, 26: 360
|
23 |
Verma C, Olasunkanmi L O, Obot I B, et al. 2,4-Diamino-5-(phenylthio)-5H-chromeno [2,3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies [J]. RSC Adv., 2016, 6: 53933
doi: 10.1039/C6RA04900A
|
24 |
Verma C, Quraishi M A, Olasunkanmi L O, et al. L-proline-promoted synthesis of 2-amino-4-arylquinoline-3-carbonitriles as sustainable corrosion inhibitors for mild steel in 1 M HCl: experimental and computational studies [J]. RSC Adv., 2015, 5: 85417
doi: 10.1039/C5RA16982H
|
25 |
Wang X W, Ren J, Li Z L, et al. Research progress of vapor phase corrosion inhibitors in marine environment [J]. Environ. Sci. Pollut. Res. Int., 2022, 29: 88432
doi: 10.1007/s11356-022-23400-2
|
26 |
Premkumar P, Kannan K, Natesan M. Evaluation of menthol as vapor phase corrosion inhibitor for mild steel in NaCl environment [J]. Arabian J. Sci. Eng., 2009, 34: 71
|
27 |
Poongothai N, Rajendran P, Natesan M, et al. Wood bark oils as vapour phase corrosion inhibitors for metals in NaCl and SO2 environments [J]. Indian J. Chem. Technol., 2005, 12: 641
|
28 |
Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
|
29 |
Zaferani S H. Corrosion inhibition of carbon steel in acidic solution by alizarin yellow GG (AYGG) [J]. J. Pet. Environ. Biotechnol., 2014, 5: 1
|
30 |
Subramanian A, Natesan M, Muralidharan V S, et al. An overview: vapor phase corrosion inhibitors [J]. Corrosion, 2000, 56: 144
doi: 10.5006/1.3280530
|
31 |
Kuznetsov Y I. Current state of the theory of metal corrosion inhibition [J]. Prot. Met., 2002, 38: 103
doi: 10.1023/A:1014904830050
|
32 |
Rosenfeld I L, Persiantseva B P, Terentiev P B. Mechanism of metal protection by volatile inhibitors [J]. Corrosion, 1964, 20: 222t
|
33 |
Martin P. Vapor pressures of volatile corrosion inhibitors by the torsion-effusion method [J]. J. Chem. Eng. Data, 1965, 10: 292
doi: 10.1021/je60026a026
|
34 |
Zhang D Q, Gao L X, Zhou G D. Synthesis of polyunit vapor phase inhibitor and its volatile corrosion inhibition performance [J]. J. Electrochem., 2003, 9: 308
|
|
张大全, 高立新, 周国定. 多单元气相缓蚀剂的合成, 气相缓蚀能力及电化学研究 [J]. 电化学, 2003, 9: 308
|
35 |
Zhang D Q, Chen X, Zhu R J, et al. Preparation of montmorillonite-modified volatile corrosion inhibitor and its properties [J]. Mater. Prot., 2008, 41(2): 57
|
|
张大全, 陈 雪, 朱瑞佳 等. 蒙脱土改性气相缓蚀剂的制备及性能研究 [J]. 材料保护, 2008, 41(2): 57
|
36 |
Andreev N N, Kuznetsov Y I. Volatile inhibitors of metal corrosion. I. vaporization [J]. Int. J. Corros. Scale Inhib., 2012, 1: 16
doi: 10.17675/2305-6894
|
37 |
Skinner W. A new method for quantitative evaluation of volatile corrosion inhibitors [J]. Corros. Sci., 1993, 35: 1491
doi: 10.1016/0010-938X(93)90376-R
|
38 |
Wan H J, Huang H J, Zhang M, et al. A modified method for evaluation of materials containing volatile corrosion inhibitor [J]. J. Cent. South Univ. Technol., 2005, 12: 406
doi: 10.1007/s11771-005-0172-0
|
39 |
Weng Y J. Vapour phase corrosion inhibitors for preservation of metallic equipments and installations on offshore platforms [J]. Oilfield Chem., 2001, 18: 367
|
|
翁永基. 埕岛海洋平台设备防大气腐蚀缓蚀剂的应用研究 [J]. 油田化学, 2001, 18: 367
|
40 |
Wei G, Yang M, Xiong R C. Usability of dicyclohexylamine nitrite for preservation of equipment [J]. Corros. Sci. Prot. Technol., 2000, 12: 269
|
|
魏 刚, 杨 民, 熊蓉春. 气相缓蚀剂用于钢制设备保护的研究 [J]. 腐蚀科学与防护技术, 2000, 12: 269
|
41 |
Liu S K, Peng Q, Wang H C. Temperature effect on inhibition efficiency of vapor phase inhibitor [J]. Mater. Prot., 2002, 35(8): 12
|
|
刘淑坤, 彭 乔, 王海潮. 温度对气相缓蚀剂缓蚀效果的影响 [J]. 材料保护, 2002, 35(8): 12
|
42 |
Li H Q, Qian J, Wang T. A confined space quantitative evaluation method of vapor phase corrosion inhibitors [J]. Packag. Eng., 2012, 33(19): 94
|
|
李海清, 钱 静, 王 彤. 一种气相缓蚀剂的密闭空间定量评价方法 [J]. 包装工程, 2012, 33(19): 94
|
43 |
Valdez B, Schorr M, Cheng N, et al. Technological applications of volatile corrosion inhibitors [J]. Corros. Rev., 2018, 36: 227
doi: 10.1515/corrrev-2017-0102
|
44 |
Zeng R C, Zhang J, Huang W J, et al. Review of studies on corrosion of magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: s763
doi: 10.1016/S1003-6326(06)60297-5
|
45 |
Zhao M C, Schmutz P, Brunner S, et al. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing [J]. Corros. Sci., 2009, 51: 1277
doi: 10.1016/j.corsci.2009.03.014
|
46 |
Vorobyova V, Chygyrynets O, Skiba M, et al. A comprehensive study of grape pomace extract and its active components as effective vapour phase corrosion inhibitor of mild steel [J]. Int. J. Corros. Scale Inhib., 2018, 7: 185
|
47 |
Zhang D Q, Gao L X, Zhou G D. Polyamine compound as a volatile corrosion inhibitor for atmospheric corrosion of mild steel [J]. Mater. Corros., 2007, 58: 594
|
48 |
Deng J H, Hu J Z, Deng P C, et al. Effect of oxide scales on initial corrosion behavior of SPHC hot rolled steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 331
|
|
邓俊豪, 胡杰珍, 邓培昌 等. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 331
doi: 10.11902/1005.4537.2018.176
|
49 |
Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
|
|
刘艳洁, 王振尧, 王彬彬 等. 实时监测技术研究薄液膜下电偶腐蚀的机理 [J]. 中国腐蚀与防护学报, 2017, 37: 261
doi: 10.11902/1005.4537.2016.038
|
50 |
Yu Y, Lu L, Li X G. Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer [J]. Chin. J. Eng., 2018, 40: 649
|
|
于 阳, 卢 琳, 李晓刚. 微区电化学技术在薄液膜大气腐蚀中的应用 [J]. 工程科学学报, 2018, 40: 649
|
51 |
Wang L W, Du C W, Liu Z Y, et al. Electrochemical principle analysis of scanning kelvin probe [J]. Corros. Sci. Prot. Technol., 2013, 25: 327
|
|
王力伟, 杜翠薇, 刘智勇 等. 扫描Kelvin探针的电化学原理分析 [J]. 腐蚀科学与防护技术, 2013, 25: 327
|
52 |
Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
|
|
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
|
53 |
Wang Y H, Zhang T, Wang J, et al. Applications of kelvin probe technique in the studies of atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 59
|
|
王燕华, 张 涛, 王 佳 等. Kelvin探头参比电极技术在大气腐蚀研究中的应用 [J]. 中国腐蚀与防护学报, 2004, 24: 59
|
54 |
Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
|
|
王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
|
55 |
Lavanya K, Kannan P, Palanisamy K, et al. Comparison study of volatile corrosion inhibitors in steam And Cl2 gas environment on mild steel [J]. Arabian J. Sci. Eng., 2014, 39: 5381
doi: 10.1007/s13369-013-0844-2
|
56 |
Zhang X, Ma Y T, Li Y, et al. Technical note: cyclohexylamine carbonate as vapor phase inhibitor for Nd-Fe-B magnet [J]. Corrosion, 2013, 69: 647
doi: 10.5006/0837TN
|
57 |
Wang D, Wang C X, Fang C Q, et al. Protective behavior of volatile corrosion inhibitor on atmospheric corrosion process of carbon steel under thin electrolyte liquid film of chloride solutions [J]. Mater. Express, 2020, 10: 1435
doi: 10.1166/mex.2020.1778
|
58 |
Ren J, Xu W C, Yang L H, et al. Study on vapor phase corrosion inhibitor for E36 ship steel in marine atmospheric environment [J]. Anti-Corros. Methods Mater., 2022, 69: 362
doi: 10.1108/ACMM-08-2021-2533
|
59 |
Feng L K, Yu Z Y, Qian Z H, et al. Corrosion inhibition behavior of salt-type vapor phase corrosion inhibitor for carbon steel [J]. Corros. Prot., 2019, 40: 28
|
|
冯礼奎, 于志勇, 钱洲亥 等. 碳钢用盐型气相缓蚀剂的缓蚀行为 [J]. 腐蚀与防护, 2019, 40: 28
|
60 |
Zhou Y B, Shao L Y, Li Y T, et al. Current status and trend of corrosion monitoring techniques [J]. Mar. Sci., 2005, 29(7): 77
|
|
周玉波, 邵丽艳, 李言涛 等. 腐蚀监测技术现状及发展趋势 [J]. 海洋科学, 2005, 29(7): 77
|
61 |
Cao G J, Yan H Y, Li X C. Screening the corrosion inhibitor by linear polarization resistance technology [J]. Total Corros. Control, 2011, 25(5): 17
|
|
曹葛军, 闫化云, 李新超. 应用线性极化电阻法现场筛选缓蚀剂 [J]. 全面腐蚀控制, 2011, 25(5): 17
|
62 |
Zheng L Q, Yang Y K, Wu Y H, et al. A method to measure corrosion rate by combination of ac impedance and weak polarization [J]. Corros. Sci. Prot. Technol., 2006, 18: 457
|
|
郑立群, 杨永宽, 吴勇华 等. 一种交流阻抗和弱极化相结合的腐蚀速度测量方法 [J]. 腐蚀科学与防护技术, 2006, 18: 457
|
63 |
Macdonald D D. Review of mechanistic analysis by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 1990, 35: 1509
doi: 10.1016/0013-4686(90)80005-9
|
64 |
Ma I A W, Ammar S, Kumar S S A, et al. A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies [J]. J. Coat. Technol. Res., 2022, 19: 241
doi: 10.1007/s11998-021-00547-0
|
65 |
Ma T F, Zhang H L, Gao L X, et al. Surface modification for Al alloy by volatile corrosion inhibitors from cyclohexylamine, octanoic acid, and their reaction product [J]. Mater. Corros., 2021, 72: 1468
|
66 |
Bertocci U, Huet F. Noise-analysis applied to electrochemical systems [J]. Corrosion, 1995, 51: 131
doi: 10.5006/1.3293585
|
67 |
Chen J F, Bogaerts W F. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion [J]. Corrosion, 1996, 52: 753
doi: 10.5006/1.3292068
|
68 |
Legat A, Doleček V. Corrosion monitoring system based on measurement and analysis of electrochemical noise [J]. Corrosion, 1995, 51: 295
doi: 10.5006/1.3293594
|
69 |
Puget Y, Trethewey K, Wood R J K. Electrochemical noise analysis of polyurethane-coated steel subjected to erosion-corrosion [J]. Wear, 1999, 233-235: 552
doi: 10.1016/S0043-1648(99)00226-4
|
70 |
Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noose I. Theory of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 55
|
|
张鉴清, 张 昭, 王建明 等. 电化学噪声的分析与应用——Ⅰ.电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21: 55
|
71 |
Obot I B, Onyeachu I B, Zeino A, et al. Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research [J]. J. Adhes. Sci. Technol., 2019, 33: 1453
doi: 10.1080/01694243.2019.1587224
|
72 |
Chen C M, Zhang T, Shao Y W, et al. Corrosion of pure magnesium under thin electrolyte films Ⅱ-influence of thin electrolyte films on anodic process of pure magnesium corrosion [J]. Corros. Sci. Prot. Technol., 2009, 21: 97
|
|
陈崇木, 张 涛, 邵亚薇 等. 利用电化学方法研究纯镁在薄液膜下的腐蚀行为Ⅱ-薄液膜对纯镁腐蚀阳极过程的影响 [J]. 腐蚀科学与防护技术, 2009, 21: 97
|
73 |
Rauf A, Bogaerts W F. Monitoring of crevice corrosion with the electrochemical frequency modulation technique [J]. Electrochim. Acta, 2009, 54: 7357
doi: 10.1016/j.electacta.2009.07.066
|
74 |
Fouda A S, El-Maksoud S A A, El-Habab A T, et al. Synthesis and characterization of novel fatty alcohol ethoxylate surfactants for corrosion inhibition of mild steel [J]. J. Bio. Tribo. Corros., 2021, 7: 18
doi: 10.1007/s40735-020-00448-6
|
75 |
Obot I B, Onyeachu I B, Kumar A M. Sodium alginate: a promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium [J]. Carbohydr. Polym., 2017, 178: 200
doi: 10.1016/j.carbpol.2017.09.049
|
76 |
Tao L, Zheng S Z, Qin L J, et al. Application of electrochemical measurement technology in the inhibition behavior research of corrosion inhibitors [J]. Ind. Water Treat., 2010, 30(8): 1
|
|
陶 蕾, 郑书忠, 秦立娟 等. 电化学测试技术在缓蚀剂缓蚀行为研究中的应用 [J]. 工业水处理, 2010, 30(8): 1
|
77 |
Swathi N P, Samshuddin S, Aljohani T A, et al. A new 1,2,4-triazole derivative as an excellent corrosion inhibitor: electrochemical experiments with theoretical validation [J]. Mater. Chem. Phys., 2022, 291: 126677
doi: 10.1016/j.matchemphys.2022.126677
|
78 |
Berdimurodov E, Kholikov A, Akbarov K, et al. Novel gossypol–indole modification as a green corrosion inhibitor for low–carbon steel in aggressive alkaline–saline solution [J]. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 637: 128207
doi: 10.1016/j.colsurfa.2021.128207
|
79 |
Wang L, Kong X D, Su X H, et al. Application of micro-area electrochemical method in the field of galvanic corrosion [J]. Mater. Prot., 2020, 53(1): 157
|
|
王 雷, 孔小东, 苏小红 等. 微区电化学方法在电偶腐蚀领域的应用 [J]. 材料保护, 2020, 53(1): 157
|
80 |
Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
|
|
徐迪, 杨小佳, 李 清 等. 材料大气环境腐蚀实验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
doi: 10.11902/1005.4537.2021.115
|
81 |
Ramírez-Cano J A, Veleva L, Fernández-Pérez B M, et al. SVET study of the interaction of 2-mercaptobenzothiazole corrosion inhibitor with Au, Cu and Au-Cu galvanic pair [J]. Int. J. Corros. Scale Inhib., 2017, 6: 307
|
82 |
Fateh A, Aliofkhazraei M, Rezvanian A R. Review of corrosive environments for copper and its corrosion inhibitors [J]. Arabian J. Chem., 2020, 13: 481
doi: 10.1016/j.arabjc.2017.05.021
|
83 |
Bastos A C, Zheludkevich M L, Ferreira M G S. Concerning the efficiency of corrosion inhibitors as given by SVET [J]. Port. Electrochim. Acta, 2007, 26: 47
doi: 10.4152/pea.200801047
|
84 |
Yan Y H, Shi H W, Wang J, et al. Corrosion inhibition of galvanized steel in NaCl solution by tolytriazole [J]. Acta Metall. Sin., 2019, 32: 471
doi: 10.1007/s40195-018-0777-6
|
85 |
Schmitzhaus T E, Vega M R O, Schroeder R, et al. Localized corrosion behavior studies by SVET of 1010 steel in different concentrations of sodium chloride containing [m-2HEA][Ol] ionic liquid as corrosion inhibitor [J]. Electrochim. Acta, 2022, 419: 104385
|
86 |
Wei X Y, Wang G, Li A F, et al. Application of electrochemical quartz crystal microbalance [J]. Prog. Chem., 2018, 30: 1701
doi: 10.7536/PC180132
|
|
魏晓妍, 王 刚, 李岸峰 等. 电化学石英晶体微天平的应用 [J]. 化学进展, 2018, 30: 1701
doi: 10.7536/PC180132
|
87 |
Johannsen K, Page D, Roy S. A systematic investigation of current efficiency during brass deposition from a pyrophosphate electrolyte using RDE, RCE, and QCM [J]. Electrochim. Acta, 2000, 45: 3691
doi: 10.1016/S0013-4686(00)00461-8
|
88 |
Klunker J, Schäfer W. Anodic behavior of copper in acetonitrile: the influence of carbon dioxide and dimethylamine [J]. J. Electroanal. Chem., 1999, 466: 107
doi: 10.1016/S0022-0728(99)00134-5
|
89 |
Qiu Y Y, Wang D H, Gan F X. Review on the application of quartz crystal microbalance in the research of metal corrosion [J]. Corros. Sci. Prot. Technol., 2002, 14: 38
|
|
仇银燕, 汪的华, 甘复兴. 石英晶体微天平在金属腐蚀研究中的应用 [J]. 腐蚀科学与防护技术, 2002, 14: 38
|
90 |
Petrunin M A, Gladkikh N A, Maleeva M A, et al. Application of the quartz crystal microbalance technique in corrosion studies. A review [J]. Int. J. Corros. Scale Inhib., 2020, 9: 92
|
91 |
Finšgar M, Lesar A, Kokalj A, et al. A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution [J]. Electrochim. Acta, 2008, 53: 8287
doi: 10.1016/j.electacta.2008.06.061
|
92 |
Gan F X, Dai ZX, Wang D H, et al. A study on the filming kinetics of corrosion inhibitors in Fe/Na2SO4 system using EQCM [J]. Corros. Sci., 2000, 42: 1379
doi: 10.1016/S0010-938X(00)00007-X
|
93 |
Sharma S, Ganjoo R, Thakur A, et al. Electrochemical characterization and surface morphology techniques for corrosion inhibition—a review [J]. Chem. Eng. Commun., 2023, 210: 412
doi: 10.1080/00986445.2022.2039913
|
94 |
Singh A, Soni N, Yu D Y, et al. A combined electrochemical and theoretical analysis of environmentally benign polymer for corrosion protection of N80 steel in sweet corrosive environment [J]. Results Phys., 2019, 13: 102116
doi: 10.1016/j.rinp.2019.02.052
|
95 |
Zhai Q X, Huang H J, Liu D, et al. Analysis the theory and application of SEM and EDS analytical method [J]. Printed Circuit Inf., 2012, (5): 66
|
|
翟青霞, 黄海蛟, 刘东 等. 解析SEM&EDS分析原理及应用 [J]. 印制电路信息, 2012, (5): 66
|
96 |
Wu L X, Chen F Y. Development of modern SEM and its application in material science [J]. Wisco Technol., 2005, 43(6): 36
|
|
吴立新, 陈方玉. 现代扫描电镜的发展及其在材料科学中的应用 [J]. 武钢技术, 2005, 43(6): 36
|
97 |
Wang Y Z, Hou X Q. Application of SEM with EDX in material analysis [J]. Manuf. Technol. Mach. Tool, 2007, (9): 80
|
|
王英姿, 侯宪钦. 带能谱分析的扫描电子显微镜在材料分析中的应用 [J]. 制造技术与机床, 2007, (9): 80
|
98 |
Belarbi Z, Vu T N, Farelas F, et al. Thiols as volatile corrosion inhibitors for top-of-the-line corrosion [J]. Corrosion, 2017, 73: 892
doi: 10.5006/2385
|
99 |
Meyer E. Atomic force microscopy [J]. Prog. Surf. Sci., 1992, 41: 3
doi: 10.1016/0079-6816(92)90009-7
|
100 |
Torre B, Ricci D, Braga P C. How the atomic force microscope works? [A]. BragaPC, RicciD. Atomic Force Microscopy in Biomedical Research [M]. Totowa: Humana, 2011: 3
|
101 |
Lin X F, Zhang H J, Zhang D X, et al. AFM in liquid and on-spot study of metal corrosion [J]. J. Optoelectron. Laser, 2006, 17: 638
|
|
林晓峰, 章海军, 张冬仙 等. 液相型AFM的研制与金属腐蚀原位研究 [J]. 光电子·激光, 2006, 17: 638
|
102 |
Wang X Q, Liu J L. A review of the application of atomic force microscopy in wood science research [J]. World For. Res., 2006, 19(1): 38
|
|
王小青, 刘君良. 原子力显微镜在木材科学研究中的应用 [J]. 世界林业研究, 2006, 19(1): 38
|
103 |
Li H Y, Lu L X, Li W Z, et al. Film formation mechanism of carboxylic acid-based volatile corrosion inhibitors on 45 steel surface [J]. Electroplat. Finish., 2020, 39: 1004
|
|
李洪阳, 卢立新, 李伟哲 等. 45钢表面羧酸类气相缓蚀剂的成膜机理 [J]. 电镀与涂饰, 2020, 39: 1004
|
104 |
Yu J T, Guo Z C, Feng T, et al. Application of X-ray photoelectron spectroscopy in material surface research [J]. Surf. Technol., 2014, 43(1): 119
|
|
余锦涛, 郭占成, 冯 婷 等. X射线光电子能谱在材料表面研究中的应用 [J]. 表面技术, 2014, 43(1): 119
|
105 |
Zhang S W, Zhang B P, Li S, et al. Enhanced photocatalytic activity in Ag-nanoparticle-dispersed BaTiO3 composite thin films: role of charge transfer [J]. J. Adv. Ceram., 2017, 6: 1
doi: 10.1007/s40145-016-0209-x
|
106 |
Zhang S W, Li S, Zhang B P, et al. Copper-nanoparticle-dispersed amorphous BaTiO3 thin films as hole-trapping centers: enhanced photocatalytic activity and stability [J]. RSC Adv., 2019, 9: 5045
doi: 10.1039/C8RA09204D
|
107 |
Zhang S W, Zhang B P, Li S, et al. SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films [J]. J. Alloy. Compd., 2016, 654: 112
doi: 10.1016/j.jallcom.2015.09.053
|
108 |
Zhang S W, Yao Y X, Gao H F, et al. Application of X-ray photoelectron spectroscopy in material surface analysis [J]. Metrol. Sci. Technol., 2021, (1): 40
|
|
张素伟, 姚雅萱, 高慧芳 等. X射线光电子能谱技术在材料表面分析中的应用 [J]. 计量科学与技术, 2021, (1): 40
|
109 |
Zhang D Q, An Z X, Pan Q Y, et al. Comparative study of bis-piperidiniummethyl-urea and mono-piperidiniummethyl-urea as volatile corrosion inhibitors for mild steel [J]. Corros. Sci., 2006, 48: 1437
doi: 10.1016/j.corsci.2005.06.007
|
110 |
Focke W W, Nhlapo N S, Vuorinen E. Thermal analysis and FTIR studies of volatile corrosion inhibitor model systems [J]. Corros. Sci., 2013, 77: 88
doi: 10.1016/j.corsci.2013.07.030
|
111 |
Li H N, Fan M, Wang K, et al. Traditional Chinese medicine extracts as novel corrosion inhibitors for AZ91 magnesium alloy in saline environment [J]. Sci. Rep., 2022, 12: 7367
doi: 10.1038/s41598-022-10900-x
pmid: 35513685
|
112 |
Cialla D, März A, Böhme R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends [J]. Anal. Bioanal. Chem., 2012, 403: 27
doi: 10.1007/s00216-011-5631-x
pmid: 22205182
|
113 |
Mun J, Lee D, So S, et al. Surface-enhanced spectroscopy: toward practical analysis probe [J]. Appl. Spectrosc. Rev., 2019, 54: 142
doi: 10.1080/05704928.2018.1467438
|
114 |
Yan C W, Yu J K, Lin H C, et al. Application of laser raman spectroscopy to the research of metal corrosion [J]. Corros. Sci. Prot. Technol., 1998, 10: 163
|
|
严川伟, 余家康, 林海潮 等. 激光拉曼光谱在金属腐蚀研究中的应用 [J]. 腐蚀科学与防护技术, 1998, 10: 163
|
115 |
Mrozek M F, Wasileski S A, Weaver M J. Periodic trends in electrode-chemisorbate bonding: benzonitrile on platinum-group and other noble metals as probed by surface-enhanced Raman spectroscopy combined with density functional theory [J]. J. Am. Chem. Soc., 2001, 123: 12817
pmid: 11749539
|
116 |
Wang J K, Ma L W, Ding X L, et al. Surface-enhanced Raman scattering (SERS) spectroscopy of corrosion inhibitors: high-resolution detection, adsorption property, and inhibition mechanism [J]. Appl. Spectrosc. Rev., 2022, doi: 10.1080/05704928.2022.2129667
|
117 |
Zhang X, Tan Q H, Wu J B, et al. Review on the Raman spectroscopy of different types of layered materials [J]. Nanoscale, 2016, 8: 6435
doi: 10.1039/c5nr07205k
pmid: 26955865
|
118 |
Gu R A, Bao F, Shen X Y, et al. Surface-enhanced Raman spectroscopic studies on the inhibition mechanisms for imidazole on zinc surfaces [J]. Chem. J. Chin. Univ., 2007, 28: 948
|
|
顾仁敖, 鲍 芳, 沈晓英 等. 咪唑对锌缓蚀机理的表面增强拉曼光谱研究 [J]. 高等学校化学学报, 2007, 28: 948
|
119 |
Tormoen G, Burket J, Dante J F, et al. Monitoring the adsorption of volatile corrosion inhibitors in real time with surface-enhanced Raman spectroscopy [J]. Corrosion, 2006, 62: 1082
doi: 10.5006/1.3278242
|
120 |
Liu L, Su H Y, Li X, et al. Study on the preparation and corrosion inhibition of Schiff-base self-assembled membranes [J]. Anti-Corros. Methods Mater., 2019, 66: 168
doi: 10.1108/ACMM-05-2018-1932
|
121 |
Peme T, Olasunkanmi L O, Bahadur I, et al. adsorption and corrosion inhibition studies of some selected dyes as corrosion inhibitors for mild steel in acidic medium: gravimetric, electrochemical, quantum chemical studies and synergistic effect with iodide ions [J]. Molecules, 2015, 20: 16004
doi: 10.3390/molecules200916004
pmid: 26364631
|
122 |
Ma F B, Zhang Y, Wang H J, et al. Inhibition behavior of chitooligosaccharide derivatives for carbon steel in 3.5% NaCl solution [J]. Int. J. Electrochem. Sci., 2018, 13: 235
doi: 10.20964/2018.01.17
|
123 |
Valente M A G, Teixeira D A, Azevedo D L, et al. Caprylate salts based on amines as volatile corrosion inhibitors for metallic zinc: Theoretical and experimental studies [J]. Front. Chem., 2017, 5: 32
doi: 10.3389/fchem.2017.00032
pmid: 28620602
|
124 |
Sun D, Li W, Wei R Z, et al. Theoretical evaluation of 2-aminofluorenic double schiff base corrosion inhibitor based on quantum chemistry [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 405
|
|
孙 丹, 李 伟, 魏润芝 等. 基于量子化学的2-氨基芴双希夫碱缓蚀剂的理论评价 [J]. 中国腐蚀与防护学报, 2021, 41: 405
|
125 |
Sun X, Qiang Y J, Hou B R, et al. Cabbage extract as an eco-friendly corrosion inhibitor for X70 steel in hydrochloric acid medium [J]. J. Mol. Liq., 2022, 362: 119733
doi: 10.1016/j.molliq.2022.119733
|
126 |
Hu H H, Chen C F. Mechanism of temperature influence on adsorption of schiff base [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 786
|
|
胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 786
doi: 10.11902/1005.4537.2020.156
|
127 |
Sun J L, He J Q. Application of quantum chemical calculation and molecular dynamics simulation in metal-working fluids investigations [J]. Pet. Process. Petrochem., 2022, 53(2): 6
|
|
孙建林, 贺佳琪. 量子化学计算和分子动力学模拟在金属加工液研究中的应用 [J]. 石油炼制与化工, 2022, 53(2): 6
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|