Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1041-1048    DOI: 10.11902/1005.4537.2022.372
Current Issue | Archive | Adv Search |
Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction
HE Jing1(), YU Hang2, FU Ziying1, YUE Penghui3
1.Infrastructure Management Office, Northeastern University, Shenyang 110819, China
2.School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(10502KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of water-soluble corrosion inhibitor on the corrosion behavior of pipeline Q235 steel beneath artificial sediments in a liquid of simulated building pipeline sewage was assessed by means of mass-loss measurement, potentiodynamic polarization curve measurement, electrochemical impedance spectroscopy and wire beam electrode (WBE) technique. The results show that the water-soluble corrosion inhibitor IMC-80-N-4 can effectively alleviate the corrosion of Q235 steel in the test environment. With the increasing concentration of the corrosion inhibitor, the inhibitor film formed and became compact gradually on the steel surface. The corrosion inhibition effect of 25 mg/L water-soluble corrosion inhibitor is the best, which reduces the free-corrosion current density of the steel substrate by two orders of magnitude. Moreover, the galvanic current in the area covered with sediments was also reduced. Therefore, regular injection of 25 mg/L water-soluble corrosion inhibitor in the construction pipeline can effectively inhibit the corrosion of Q235 steel, besides, the inhibitor exhibits a good effect even under the condition of sediment coverage. That can significantly improve the safe operation of the construction pipeline, so that increase and extend the service life of the building.

Key words:  water soluble corrosion inhibitor      construction pipeline      Q235 steel      corrosion behavior     
Received:  28 November 2022      32134.14.1005.4537.2022.372
ZTFLH:  TG172  
Fund: Liaoning Revitalization Talents Program(XLYC2002071);Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education(2020011)
Corresponding Authors:  HE Jing, E-mail: 470010175@qq.com   

Cite this article: 

HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1041-1048.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.372     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1041

Fig.1  Potentiodynamic polarization curves of Q235 steel covered by sediments with different concentrations of water-soluble inhibitors
Concentrationmg·L-1Ecorr / mVIcorrμA·cm-2η / %
0-47621.6-
8-41212.044.44
15-4340.26698.77
25-4730.10999.49
Table 1  Corrosion potential, corrosion current and slow release efficiency of samples with different concentrations of water-soluble inhibitors
Fig.2  Time-varying electrochemical impedance spectra of sediment-covered Q235 steel with different concentrations of water-soluble inhibitors: (a, b) 0 h, (c, d) 24 h, (e, f) 48 h, (g, h) 96 h, (i, j) 144 h
Fig.3  Equivalent circuit used to fit the electrochemical impedance spectrum in Fig.2
Fig.4  Corrosion product resistance (a) and charge transfer resistance (b) of sediment-covered Q235 steel for 6 d after the addition of different con-centrations of inhibitors
Fig.5  Potential (a) and current distribution (b) of sediment-covered Q235 steel without inhibitor
Fig.6  Potential (a) and current distribution (b) of sediment-covered Q235 steel with 8 mg/L inhibitor
Fig.7  Potential (a) and current distribution (b) of sediment-covered Q235 steel with 15 mg/L inhibitor
Fig.8  Potential (a) and current distribution (b) of sediment-covered Q235 steel with 25 mg/L inhibitor
Fig.9  Macroscopic corrosion morphologies of sediment-covered Q235 steel after 168 h immersion: (a) without inhibitor, (b) 8 mg/L, (c) 15 mg/L, (d) 25 mg/L
Fig.10  Surface morphology of corrosion scales of sediment-covered Q235 steel after 168 h immersion: (a) without inhibitor, (b) 8 mg/L, (c) 15 mg/L, (d) 25 mg/L
1 Ke W. Progress in public inquiry concerning corrosion in Chinese industrial and natural environments [J]. Corros. Prot., 2004, 25(1): 1
柯 伟. 中国工业与自然环境腐蚀调查的进展 [J]. 腐蚀与防护, 2004, 25(1): 1
2 Yan Z X, Wang L D, Zhang P J, et al. Failure analysis of Erosion-Corrosion of the bend pipe at sewage stripping units [J]. Eng. Failure Anal., 2021, 129: 105675
doi: 10.1016/j.engfailanal.2021.105675
3 Foorginezhad S, Mohseni-Dargah M, Firoozirad K, et al. Recent advances in sensing and assessment of corrosion in sewage pipelines [J]. Process Saf. Environ. Protect., 2021, 147: 192
doi: 10.1016/j.psep.2020.09.009
4 Montes J C, Hamdani F, Creus J, et al. Impact of chlorinated disinfection on copper corrosion in hot water systems [J]. Appl. Surf. Sci., 2014, 314: 686
doi: 10.1016/j.apsusc.2014.07.069
5 Salama M M. Influence of sand production on design and operations of piping systems [A]. Corrosion 2000 [C]. Orlando, 2000
6 Smith J P, Gilbert I, Kidder R. Inhibition of CO2 corrosion in multiphase flow and solids production: A case history [A]. Corrosion 2001 [C]. Houston, 2001
7 Yin Y K, He L M, Zheng Y F, et al. Under deposit corrosion behavior of pipeline steel in oxygenated medium [J]. Corros. Prot., 2022, 43(9): 35
尹彦坤, 贺丽敏, 郑宇峰 等. 含氧介质中管线钢在沉积物下的腐蚀行为 [J]. 腐蚀与防护, 2022, 43(9): 35
8 Tu J G, Wang X, Zhang L, et al. Reason analysis of leakage in 304 stainless steel water pipe [J]. Heat Treat. Technol. Equip., 2017, 38(1): 52
涂建国, 王 鑫, 张 玲 等. 304不锈钢水管泄漏原因分析 [J]. 热处理技术与装备, 2017, 38(1): 52
9 Wang X, Melchers R E. Corrosion of carbon steel in presence of mixed deposits under stagnant seawater conditions [J]. J. Loss Prev. Process Ind., 2017, 45: 29
doi: 10.1016/j.jlp.2016.11.013
10 Jiang J, Xin Z H, Zou S H, et al. Study on the control of iron release in water distribution systems by pH, alkalinity and corrosion inhibitor [J]. Water Wastewater Eng., 2021, 57(S1): 422
蒋 境, 辛卓航, 邹苏红 等. pH、碱度和缓蚀剂对抑制给水管网铁释放的效果研究 [J]. 给水排水, 2021, 57(S1): 422
11 Kimbell L K, Wang Y, McNamara P J. The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems [J]. Appl. Microbiol. Biotechnol., 2020, 104: 7673
doi: 10.1007/s00253-020-10777-8 pmid: 32734389
12 Zhang J P, Zhang Q Y, Yang H X, et al. Inhibition and electrochemical behaviors of Thiazole derivative in CO2 saturated environment [J]. Mater. Prot., 2004, 37(11): 44
张军平, 张秋禹, 颜红侠 等. 饱和CO2环境下噻唑衍生物的缓蚀性能和电化学特征 [J]. 材料保护, 2004, 37(11): 44
13 Volk C, Dundore E, Schiermann J, et al. Practical evaluation of iron corrosion control in a drinking water distribution system [J]. Water Res., 2000, 34: 1967
doi: 10.1016/S0043-1354(99)00342-5
14 Mi Z L, Zhang X J, Wang Y, et al. Control effects of phosphate inhibitors on iron release in drinking water distribution system [J]. China Water Wastewater, 2013, 29(23): 52
米子龙, 张晓健, 王 洋 等. 磷酸盐类缓蚀剂对给水管网铁释放的控制作用 [J]. 中国给水排水, 2013, 29(23): 52
15 Pandarinathan V, Lepková K, Bailey S I, et al. Evaluation of corrosion inhibition at sand-deposited carbon steel in CO2-saturated brine [J]. Corros. Sci., 2013, 72: 108
doi: 10.1016/j.corsci.2013.03.013
16 Al-Rawajfeh A E, Al-Shamaileh E M. Inhibition of corrosion in steel water pipes by ammonium pyrrolidine dithiocarbamate (APDTC) [J]. Desalination, 2007, 206: 169
doi: 10.1016/j.desal.2006.02.065
17 Liu Y, Wu Y H, Luo S X. Macrocell corrosion of Q235 steel in polluted soils due to the difference of oxygen concentration [J]. Corros. Prot., 2008, 29(8): 438
刘 焱, 伍远辉, 罗宿星. Q235钢在污染土壤中的氧浓差宏电池腐蚀 [J]. 腐蚀与防护, 2008, 29(8): 438
18 Fushimi K, Naganuma A, Azumi K, et al. Current distribution during galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution [J]. Corros. Sci., 2008, 50: 903
doi: 10.1016/j.corsci.2007.10.003
19 Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt [J]. Science, 2011, 332: 443
doi: 10.1126/science.1200832 pmid: 21512028
20 Tan Y J, Fwu Y, Bhardwaj K. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method [J]. Corros. Sci., 2011, 53: 1254
doi: 10.1016/j.corsci.2010.12.015
21 Yu H. Effect of deposite to the corrosion behavior of Q235 steel in producted water [D]. Harbin: Harbin Engineering University, 2016
于 航. 沉积物对产出水中Q235钢腐蚀行为的影响 [D]. 哈尔滨: 哈尔滨工程大学, 2016
[1] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[2] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[3] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[4] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[5] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[6] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[7] ZHAO Yi, CAO Jingyi, FANG Zhigang, FENG Yafei, HAN Zhuo, MENG Fandi, WANG Zhaodong, WANG Fuhui. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[8] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[9] LIANG Zhiyuan, XU Yiming, WANG Shuo, LI Yufeng, ZHAO Qinxin. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[10] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[11] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[12] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[13] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[14] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[15] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
No Suggested Reading articles found!