Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 77-86    DOI: 10.11902/1005.4537.2022.037
Current Issue | Archive | Adv Search |
Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid
WU Hao1, DENG Shuduan2, LI Xianghong1()
1.Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
2.Faculty of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China
Download:  HTML  PDF(8469KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cuscuta chinensis Lam extract (CCLE) was obtained from the dodder, which is a kind of parasitic plant, by circulation reflux method. The synergistic inhibition effect of CCLE and KI on cold rolled steel in 1.0 mol/L HCl solution was studied by mass loss method, potentiodynamic polarization curve measurement and electrochemical impedance spectroscope, as well as electron microscope (SEM) and atomic force microscope (AFM). The results showed that CCLE acts as an efficient inhibitor for cold rolled steel in HCl solution, and the maximum inhibition efficiency is 84.0%. The inhibition can be further increased to 90.8% for the combination of CCLE with KI. All the synergism parameters are higher than unity for the design of various compound concentrations and test temperatures. The adsorption of CCLE and CCLE/KI obey Langmuir isotherm. When CCLE is incorporated with KI, both of the adsorption equilibrium constant (K) and the absolute value of standard adsorption free energy (ΔG0) becomes larger. CCLE and CCLE/KI can be arranged as mixed-type inhibitors, and the inhibition coefficient is strengthened after combination. There exists a single capacitive loop in the Nyqusit diagram. The charge transfer resistance turns to be much higher for the combination of CCLE with KI. SEM and AFM observation result also proves that the combination of CCLE and KI presents a significantly synergistic inhibition effect on the surface of cold rolled steel in HCl solution.

Key words:  corrosion inhibitor      synergistic inhibition effect      cold rolled steel      Cuscuta chinensis Lam      potassium iodide      hydrochloric acid     
Received:  12 February 2022      32134.14.1005.4537.2022.037
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52161016);Fundamental Research Project for Distinguished Young Scholars in Yunnan Province(202001AV070008);Special Project of "Top Young Talents" of Yunnan Ten Thousand Talents Plan(51900109);Open project of Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China(2021-KF10)

Cite this article: 

WU Hao, DENG Shuduan, LI Xianghong. Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 77-86.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.037     OR     https://www.jcscp.org/EN/Y2023/V43/I1/77

Fig.1  FTIR spectrum of CCLE
Fig.2  Inhibition efficiencies (ηw) of CCLE (a) and CCLE+10 mg/L KI (b) as functions of inhibitor concentration (c) in 1.0 mol/L HCl solution at different temperatures
Fig.3  Synergistic inhibition parameter (s) of CCLE/KI as a function of CCLE concentration (c) in 1.0 mol/L HCl at 20-50 ℃
Fig.4  Fitted straight lines of c/θ-c for CCLE (a) and CCLE+10 mg/L KI (b)
InhibitorT / ℃r 2SlopeInterceptK / L·mg-1ΔG0 / kJ·mol-1
CCLE200.99511.219.340.1071-28.23
300.99671.109.370.1067-29.18
400.99881.136.550.1527-31.08
500.99821.1013.590.0736-30.11
CCLE+10 mg/L KI200.99981.122.040.4893-31.93
300.99991.091.490.6721-33.82
400.99991.064.090.2443-32.30
500.99971.066.810.1469-31.96
Table 1  Linear regression parameters of c/θ-c and adsorption thermodynamic parameters
Fig.5  Potentiodynamic polarization curves of cold rolled steel in 1.0 mol/L HCl solutions containing CCLE (a) and CCLE+10 mg/L KI (b)
Inhibitorc / mg·L-1Ecorr / mV-bc / mV·dec-1ba / mV·dec-1Icorr / μA·cm-2ηp / %
CCLE0-46011546251---
10-455111446872.9
50-462127545578.1
100-456134573386.8
CCLE+10 mg/L KI10-452116453586.1
50-449141483187.6
100-455140562988.4
Table 2  Potential polarization parameters of cold rolled steel in 1.0 mol/L HCl solutions containing CCLE and CCLE+KI at 20 ℃
Fig.6  Nyquist plots (a, d), Bode moduli (b, e) and Bode phases (c, f) of cold rolled steel at 20 ℃ in 1.0 mol/L HCl solutions containing CCLE (a-c) and CCLE+10 mg·L-1 KI (d-f)
Fig.7  Equivalent circuit used for fitting EIS data
Inhibitorc / mg·L-1Rs / Ω·cm2Rt / Ω·cm2Q / μΩ-1·sa·cm-2aCdl / μF·cm-2χ 2ηR / %
CCLE01.5102.31080.90651.6×10-3---
101.3218.1810.90524.5×10-353.1
501.2388.8960.84518.6×10-373.7
1001.4487.7780.86454.8×10-379.0
CCLE+10 mg/L KI101.4346.0860.87524.8×10-370.4
501.4496.8800.85484.4×10-379.4
1001.2524.1720.85408.1×10-380.5
Table 3  Fitting parameters of EIS of cold rolled steel in 1.0 mol/L HCl solutions without and with CCLE and CCLE/KI at 20 ℃
Fig.8  SEM surface micrographs of cold rolled steel samples before (a) and after (b-e) immersion at 30 ℃ for 6 h in 1.0 mol/L HCl solutions without (b) and with 10 mg/L KI (c), 100 mg/L CCLE (d), 10 mg/L KI+100 mg/L CCLE (e)
Fig.9  3D-AFM micrographs of the surfaces of cold rolled steel samples before (a) and after immersion at 30 ℃ for 6 h in 1.0 mol/L HCl solutions without (b) and with (c) 10 mg/L KI, 100 mg/L CCLE (d), 10 mg/L KI+100 mg/L CCLE (e)
CRS surfaceRa / nmRq / nmRmax / nm
Before immersion4.516.6556.7
HCl3.625.1393.0
HCl+KI1211541030
HCl+CCLE37.653449
HCl+CCLE+KI61.179646
Table 4  AFM determined surface rough parameters of cold rolled steel samples before and after immersion at 30 ℃ for 6 h
Fig.10  Schematic illustration of collaborative adsorption
1 Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
2 Verma C, Ebenso E E, Bahadur I, et al. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media [J]. J. Mol. Liq., 2018, 266: 577
doi: 10.1016/j.molliq.2018.06.110
3 Li X H, Xu X, Deng S D. Research progress and prospects of the inhibition of plant corrosion inhibitors to steel [J]. Clean. World, 2018, 34(9): 39
李向红, 徐昕, 邓书端. 植物缓蚀剂对钢的缓蚀作用研究进展与展望 [J]. 清洗世界, 2018, 34(9): 39
4 Zaferani S H, Sharifi M, Zaarei D, et al. Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes-A review [J]. J. Environ. Chem. Eng., 2013, 1: 652
doi: 10.1016/j.jece.2013.09.019
5 Chen W, Huang D X, Wei F. Inhibition effect of Brainea Insignis extract against carbon steel corrosion in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376
陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 376
6 Khadraoui A, Khelifa A. Ethanolic extract of Ruta chalepensis as an eco-friendly inhibitor of acid corrosion of steel [J]. Res. Chem. Intermed., 2013, 39: 3937
doi: 10.1007/s11164-012-0910-5
7 Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
doi: 10.1016/j.corsci.2018.01.008
8 He T, Emori W, Zhang R H, et al. Detailed characterization of Phellodendron chinense Schneid and its application in the corrosion inhibition of carbon steel in acidic media [J]. Bioelectrochemistry, 2019, 130: 107332
doi: 10.1016/j.bioelechem.2019.107332
9 Prabakaran M, Kim S H, Hemapriya V, et al. Tragia plukenetii extract as an eco-friendly inhibitor for mild steel corrosion in HCl 1 M acidic medium [J]. Res. Chem. Intermed., 2016, 42: 3703
doi: 10.1007/s11164-015-2240-x
10 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
11 Umoren S A, Solomon M M. Effect of halide ions on the corrosion inhibition efficiency of different organic species-A review [J]. J. Ind. Eng. Chem., 2015, 21: 81
doi: 10.1016/j.jiec.2014.09.033
12 Wan S, Zhang T, Chen H K, et al. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium [J]. Ind. Crops Prod., 2022, 178: 114649
doi: 10.1016/j.indcrop.2022.114649
13 Hu Q, Qiu Y B, Zhang G A, et al. Study on the synergistic effect between KI and the extracts of capsella bursa-pastoris inhibitors [J]. Corros. Prot., 2014, 35: 110
胡琴, 邱于兵, 张国安 等. 无机碘离子复配植物荠菜缓蚀剂的研究 [J]. 腐蚀与防护, 2014, 35: 110
14 Lu Y, Zheng X W, Liu X L, et al. Corrosion inhibition of ficus microcarpa leaves extract and its synergistic effect with KI in sulfuric acid [J]. Surf. Technol., 2003, 42(3): 28
卢燕, 郑兴文, 刘新露 等. 硫酸介质中榕树叶提取液的缓蚀性能及其与KI的缓蚀协同效应 [J]. 表面技术, 2013, 42(3): 28
15 Ituen E, James A, Akaranta O, et al. Eco-friendly corrosion inhibitor from Pennisetum purpureum biomass and synergistic intensifiers for mild steel [J]. Chin. J. Chem. Eng., 2016, 24: 1442
doi: 10.1016/j.cjche.2016.04.028
16 Zheng X W, Gong M, Zeng X G, et al. The synergistic inhibition effect of cinnamomum camphor leaves extractive and potassium iodide [J]. Surf. Technol., 2011, 40(4): 41
郑兴文, 龚敏, 曾宪光 等. 樟树叶提取液与碘化钾的缓蚀协同效应 [J]. 表面技术, 2011, 40(4): 41
17 Guo Y, Gao M D, Wang Y, et al. Synergistic effect of corrosion inhibition of tobacco rob extract and potassium iodide [J]. Ind. Water Treat., 2015, 35(12): 57
郭勇, 高美丹, 王艳 等. 烟柴杆提取物与碘化钾的缓蚀协同效应 [J]. 工业水处理, 2015, 35(12): 57
18 Aquino-Torres E, Camacho-Mendoza R L, Gutierrez E, et al. The influence of iodide in corrosion inhibition by organic compounds on carbon steel: theoretical and experimental studies [J]. Appl. Surf. Sci., 2020, 514: 145928
doi: 10.1016/j.apsusc.2020.145928
19 Zhang F, Li X H. Inhibition performance of alternanthera philoxeroide extract on cold rolled steel in HCl solution [J]. Corros. Prot., 2020, 41(7): 30
张富, 李向红. 空心莲子草提取物对冷轧钢在HCl溶液中的缓蚀性能 [J]. 腐蚀与防护, 2020, 41(7): 30
20 Hu F C, Yu P, Yuan J L, et al. Eupatorium adenophora spreng. leaves extract as corrosion inhibitor for cold rolled steel in HCl solution [J]. Total Corros. Control, 2015, 29(10): 53
胡富纯, 余攀, 袁觉立 等. 紫茎泽兰叶提取物作为冷轧钢在HCl中的缓蚀剂 [J]. 全面腐蚀控制, 2015, 29(10): 53
21 Wu Y G, Liu Z P, Liu F. Research progress on biological interaction between Cuscuta and their host plants [J]. Chin. J. Grassl., 2020, 42(4): 169
吴昱果, 刘志鹏, 刘芳. 菟丝子和寄主互作的生物学研究进展 [J]. 中国草地学报, 2020, 42(4): 169
22 Hosseini M, Mertens S F L, Arshadi M R. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine [J]. Corros. Sci., 2003, 45: 1473
doi: 10.1016/S0010-938X(02)00246-9
23 Langmuir I. The constitution and fundamental properties of solids and liquids [J]. J. Am. Chem. Soc., 1916, 38: 2221
doi: 10.1021/ja02268a002
24 Singh A, Ansari K R, Chauhan D S, et al. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15%HCl medium [J]. J. Colloid Interf. Sci., 2020, 560: 225
doi: 10.1016/j.jcis.2019.10.040
25 Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
doi: 10.1016/S0010-938X(99)00029-3
26 Pareek S, Jain D, Hussain S, et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5wt.%NaCl solution by eco-friendly imidazopyrimidine Dye: experimental and theoretical approach [J]. Chem. Eng. J., 2019, 358: 725
doi: 10.1016/j.cej.2018.08.079
27 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
doi: 10.1016/S0010-938X(96)00034-0
28 Zhang Q H, Hou B S, Li Y Y, et al. Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution [J]. Corros. Sci., 2020, 164: 108346
doi: 10.1016/j.corsci.2019.108346
29 Li X H, Xie X G, Deng S D, et al. Inhibition effect of two mercaptopyrimidine derivatives on cold rolled steel in HCl solution [J]. Corros. Sci., 2015, 92: 136
doi: 10.1016/j.corsci.2014.11.044
30 Cen H Y, Cao J J, Chen Z Y. Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2020, 177: 109011
doi: 10.1016/j.corsci.2020.109011
31 Li X H, Deng S D, Fu H, et al. Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl [J]. Electrochim. Acta, 2009, 54: 4089
doi: 10.1016/j.electacta.2009.02.084
32 Li J P, Wang J, Zhang Y W, et al. Advancement on the research of China dodder [J]. China Med. Her., 2009, 6(23): 5
李建平, 王静, 张跃文 等. 菟丝子的研究进展 [J]. 中国医药导报, 2009, 6(23): 5
33 Umoren S A, Ogbobe O, Igwe I O, et al. Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives [J]. Corros. Sci., 2008, 50: 1998
doi: 10.1016/j.corsci.2008.04.015
[1] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[2] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[3] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[4] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[5] ZHOU Kun, LIU Xinhua, LIU Shuai. Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[6] HUANG Miao, WANG Lizi, MA Xiaoqing, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Nd(NO3)3 on Aluminum in HCl Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[7] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[8] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[9] DENG Zhihua, LEI Ran, ZHANG Zhiyong, YANG Weiyu, LI Xianghong. Corrosion Inhibition of Vetiver Extract on Steel in Hydrochloric Acid Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 173-178.
[10] LIAN Yubo, ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei. Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
[11] LUO Weiping, LUO Xue, SHI Yueting, WANG Xinchao, ZHANG Shengtao, GAO Fang, LI Hongru. Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[12] FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[13] ZHANG Zhengyang, GUO Zixin, ZHOU Xin, SUN Haijing, SUN Jie. Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[14] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[15] YANG Xinyu, YANG Yuntian, LU Xiaopeng, ZHANG Tao, WANG Fuhui. Research Progress of Corrosion Inhibitor for Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
No Suggested Reading articles found!